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 Toward Computational
 Fluency in Multidigit

 Multiplication and Division
 in the United States and Canada, students have first learned how to compute with

 whole numbers and then have applied that kind of computation. This approach presents several

 problems. First, less-advanced students sometimes never reach the application phase, so their

 learning is greatly limited. Second, word problems usually appear at the end of each section or chapter on

 computation, so sensible students do not read the problems carefully: They simply perform the operation that

 they have just practiced on the numbers in the problem. This practice, plus the emphasis on teaching students

 to focus on key words in problems rather than to build a complete mental model of the problem situa-

 tion, leads to poor problem solving because students never learn to read and model the problems them-

 selves. Third, seeing problem situations only after learning the mathematical operations keeps students

 from linking those operations with aspects of the problem situations. This isolation limits the meaningfulness

 of the operations and the ability of children to use the operations in a variety of situations.

 Research has indicated that beginning with
 problem situations yields greater problem-solving
 competence and equal or better computational
 competence. Children who start with problem situ-
 ations directly model solutions to these problems.
 They later move to more advanced mathematical
 approaches as they progress through levels of solu-

 tions and problem difficulty. Thus, their develop-
 ment of computational fluency and their acquisi-
 tion of problem-solving skills are intertwined as
 both develop with understanding.

 Building Fluency with
 Computational Methods:
 General Issues
 Fluency with computational methods is the heart of
 what many people in the United States and Canada
 consider to be the elementary mathematics curricu-
 lum. Learning and practicing computational meth-
 ods are central to many memories of learning in the
 twentieth century. However, twentieth-century
 mathematics teaching and learning were driven by
 goals and by theories of learning that are not suffi-

 cient for the twenty-first century, in which inex-
 pensive machine calculators are widely available,
 computers increasingly appear in schools and
 libraries, the World Wide Web gives access to a
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 The paper from which this article is excerpted, "Developing Mathematical Power in Whole-
 Number Operations" was commissioned by NCTM's Research Advisory Committee to sum-
 marize the current state of educational research for use by writing groups preparing Princi-
 ples and Standards for School Mathematics. Sections from the original paper were omitted in
 order to focus on multidigit multiplication and division. The omitted sections address single-
 digit addition, subtraction, multiplication, and division; multidigit addition and subtraction;
 and general issues in achieving computational fluency, such as curricular issues, instructional
 phases, helping diverse learners, individual differences, and preparing for rational numbers.
 The complete paper will appear in NCTM's Research Companion to Principles and Standards
 for School Mathematics, currently in press. We sincerely thank Karen Fuson and those
 involved with the Research Companion for allowing us to include this excerpt in the focus
 issue.- T.B. and J.S., focus issue editors
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 huge variety of information, and supercomputers
 create demands for new kinds of machine algo-
 rithms, such as general multistep methods. The
 information age creates for all citizens the need for

 lifelong learning and for flexible approaches to
 solving problems. Everyone needs the ability to
 use calculating machines with understanding.

 Clearly, the twenty-first century requires a
 greater focus on a wider range of problem-solving
 experiences and a reduced focus on learning and
 practicing by rote a large body of standard calcula-
 tion methods. How to use the scarce hours of math-

 ematics learning time in schools is a central issue.
 This decision requires in part a value judgment as
 to which needs are most important. But new
 research can also influence our choices. Educators

 and the public are still attempting to reach consen-
 sus on the kinds and amounts of computational flu-

 ency that are necessary today. Computational flu-
 ency is one vital component of developing
 mathematical power; other components include
 understanding the uses and methods of computa-
 tion. Given that mathematics learning time is a
 scarce resource, educators need to know roughly
 the amount of time various children require to
 reach various levels of computational fluency.
 Only with such knowledge can we make sensible
 decisions about how to allocate scarce learning
 time for reaching, among all the worthwhile goals
 of mathematics learning, computational fluency.

 Several themes characterize much of the research

 on computational methods over the past thirty years.
 These themes apply across computational domains
 such as single-digit addition and subtraction and
 multidigit multiplication and division. Within each
 computational domain, individual learners move
 through progressions of methods from initial, trans-

 parent, problem-modeling, concretely represented
 methods to less transparent, more-problem-indepen-
 dent, mathematically sophisticated, symbolic meth-
 ods. At a given moment, each learner knows and
 uses a range of methods that may differ according to

 the numbers in the problem, the problem situation,
 or other individual and classroom variables. A

 learner may use different methods even on very sim-

 ilar problems, and because any new method com-
 petes for a long time with older methods, the learner

 may not use it consistently. Typical errors can be
 identified for each domain and for many methods
 (Ashlock 1998), and researchers have designed and
 studied ways to help students overcome these errors.
 A detailed understanding of methods in each
 domain enables us to identify prerequisite compe-
 tencies that all learners can develop to access those
 methods.

 The constant cycles of mathematical doing and
 knowing lead to learners' construction of represen-

 tational tools that they use mentally to find solu-
 tions. Learners invent varying methods regardless
 of whether their teachers have focused on teaching
 for understanding or on rote memorizing of a par-
 ticular method. In classrooms in which the focus is

 teaching for understanding, however, students
 develop a wider range of effective methods. In
 classrooms in which rote learning methods are
 used, students' inventiveness often generates many
 different kinds of errors, most of which are par-
 tially correct methods created by a particular mis-
 understanding. Thus, even in traditional class-
 rooms emphasizing standard computational
 methods, learners are not passive absorbers of
 knowledge. They build and use their own meaning
 and doing, and they generalize and reorganize this
 meaning and doing.

 Multidigit addition, subtraction, multiplication,
 and division solution methods are called algo-
 rithms. An algorithm is a general multistep proce-
 dure that will produce an
 answer for a given class of
 problems. Computers use
 many different algorithms to
 solve different kinds of prob-
 lems, and inventing new algo-
 rithms is an increasingly
 important area of applied
 mathematics. Around the

 world, many different algo-
 rithms have been invented

 and taught for multidigit
 addition, subtraction, multi-
 plication, and division. Stu-
 dents in U.S. and Canadian

 schools have learned different

 algorithms at different times. Each algorithm has
 advantages and disadvantages. Therefore, the deci-
 sions about computational fluency concern in part
 the algorithms that might be supported in class-
 rooms and the bases for selecting those algorithms.

 One goal of the following sections is to under-
 score the possibility of understanding various com-
 putational methods. Because such understanding
 has ordinarily not been a goal of school mathemat-
 ics, most educational decision makers have not had

 an opportunity to understand the standard algo-
 rithms or to appreciate the wide variety of possible
 algorithms. Most teachers also have not had that
 opportunity, and most textbooks do not sufficiently
 help develop such understanding.

 Research indicates that some algorithms are
 more accessible to understanding than others and
 that understanding can be increased by quantity
 supports such as manipulatives and drawings to
 help children understand the meanings of the num-
 bers, notations, and steps in the algorithms. This
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 understanding does not conflict with developing
 computational fluency but rather is foundational to
 it. Children need scaffolded practice with whatever
 methods they are using to become more fluent in
 orchestrating the steps in any algorithm. Under-
 standing can serve as a continual directive toward
 correct steps and as a constraint on the many cre-
 ative calculating errors invented by students who
 are taught algorithms by rote. Because children
 cannot understand all algorithms equally (many
 sacrifice comprehensibility to save space in writ-
 ing), I describe at least one algorithm that has been
 demonstrated to be accessible to a wide range of
 students. My criteria for such accessible algorithms
 are that they scaffold the understanding of princi-
 pal steps in the domain, generalize readily to large
 numbers, have variations that provide for individ-
 ual differences in thinking, and are procedurally
 simple to carry out, that is, they require the mini-
 mum of computational subskills so that valuable
 learning time is not required to bring unnecessary
 subskills to the needed level of accuracy.

 Multidigit Multiplication
 and Division
 Much less research is available on children's

 understandings of multidigit multiplication and
 division than on single-digit computation and mul-
 tidigit addition and subtraction. Educators have
 published sample teaching lessons (Lampert 1986,
 1992) and have explored alternative methods for
 accomplishing these operations (Carroll and Porter
 1998). Researchers have reported a preliminary
 learning progression of multidigit methods for
 third- to fifth-grade classrooms in which teachers
 fostered children's invention of algorithms (Baek
 1998). These methods moved from (a) direct mod-
 eling with objects or drawings (such as by ones and
 by tens and ones), to (b) written methods involving
 repeatedly adding - sometimes by repeated dou-
 bling, a surprisingly effective method used histori-
 cally, to (c) partitioning methods. The partitioning
 methods ranged from partitioning using numbers
 other than 10, partitioning one number into tens
 and ones, and partitioning both numbers into tens
 and ones.

 Current and accessible methods

 The multiplication and division algorithms currently
 most prevalent are complex embedded methods that
 are not easy to understand or to carry out (see the
 leftmost methods in fig. 1). They demand high lev-
 els of skill in multiplying a multidigit number by a
 single-digit number within complex embedded for-
 mats in which multiplying and adding alternate. In
 these algorithms, the meaning and scaffolding of

 substeps have been sacrificed to using a small
 amount of paper. The multiplication and division
 algorithms use aligning methods that keep the steps

 organized by correct place value without requiring
 any understanding of what is actually happening
 with the ones, tens, and hundreds.

 Figure 1 presents modifications of these meth-
 ods that clarify the meaning and purpose of each
 step. The separation of steps in each of these acces-
 sible methods also facilitates the linking of each
 step with the quantities involved. An array drawing
 shows the quantities; arrays are powerful models of
 multiplication and division. The accessible meth-
 ods and drawings demonstrate central features in
 multidigit multiplication and division that students
 must come to understand and do.

 Accessible multiplication methods
 For multiplication, teachers first show an array-size
 model. Such a model provides initial support for
 the crucial understandings of the effects of multi-
 plying by 1, 10, and 100. It also shows clearly how
 each of the tens and ones in 46 and 68 are multi-

 plied by each other and are then added after stu-
 dents have completed all multiplication operations.
 The sizes of the resulting squares or rectangles
 indicate the sizes of these various products and
 thus support the understanding. As one looks
 across each row in the array, one can see in the top
 row 10 x 46 as 10 x 40 (four squares of 100) plus
 10x6 (six columns of 10 each). Multiplying by 60
 creates six such rows of 10 products, so multiply-
 ing by 60 is multiplying by 10 and then multiply-
 ing by 6. Then one sees eight rows of 1 x 46 as 1 x
 40 and 1x6 (eight rows of each). Teachers can
 draw the abbreviated model shown in figure 1 to
 summarize steps in multidigit multiplication. Its
 separation into tens and ones facilitates the neces-
 sary multiplication operations.

 The accessible multiplication algorithm shown
 in the top right of figure 1 is the fullest form with

 all possible supports. As students come to under-
 stand each aspect of multiplication, they can drop
 each of the supports, resulting in a streamlined ver-
 sion that is a simple expanded form of the usual
 U.S. method. Variations of the accessible algorithm
 have been widely used in research classrooms and
 in some innovative textbooks. Its main feature is a

 clear record of each of the four pairs of numbers (40
 x 60, 40 x 8, 6 x 60, 6 x 8) that students need to
 multiply. The vertical and diagonal marks are a way
 for students to record as they go which numbers
 they have already multiplied. Unlike the current
 U.S. algorithm, which starts at the right and multi-

 plies units first, the accessible algorithm begins at
 the left, as students prefer to do. This approach also
 has the advantage that the first product written is the

 302 TEACHING CHILDREN MATHEMATICS

This content downloaded from 76.88.19.58 on Sat, 04 Feb 2017 23:20:07 UTC
All use subject to http://about.jstor.org/terms



 I I * ■ I * ■

 Multidigit multiplication and division (figure 6.4 in the original paper)
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 largest, permitting all the smaller products to align
 easily under it in their correct places. Writing the
 factors at the side of each product emphasizes what
 students are actually doing in each step and permits
 an easy check. Writing out the separate products for
 40 x 60 and 40 x 8 is much easier for students than

 doing the usual procedure: multiply 40 x 8, write
 part of the answer below and part above the prob-
 lem, multiply 40 x 60, and then add the number
 written above the problem. The complex alternation
 of multiplying and adding in the usual algorithm is
 not necessary, is a source of errors, and obfuscates
 what students are actually doing in multidigit mul-
 tiplying: multiplying each combination of units and
 adding all of them (see the abbreviated model). Stu-
 dents who understand and wish to drop steps in the
 accessible algorithm do so readily, with a result
 looking like the usual U.S. method except that it has

 four, instead of two, products to be added. These
 four can even be folded into two, if students wish.

 Therefore, the accessible model permits students to
 function at their own level of scaffolded under-

 standing and helps them explain what they are
 doing.

 Multiplying by three-digit numbers is a simple
 extension of the two-digit version. After a concep-
 tual development of the results of multiplying by
 100 (that is, numbers get two places larger, so they
 move left two places), abbreviated drawings can
 demonstrate the nine combinations of products that
 students need to find and add. Students can easily
 carry out the accessible algorithm for these larger
 numbers because it scaffolds the necessary steps.
 Given the accessibility of calculators, the amount
 of valuable school learning time that teachers
 should devote to such large multiplication prob-
 lems is unclear. But teachers could easily introduce
 them in a conceptual fashion that then relates to
 estimating the product, especially when the largest
 product is found first, as in the accessible method
 shown in figure 1.

 Current and accessible division
 methods

 The usual U.S. division algorithm has two aspects
 that create difficulties for students. First, it requires

 them to determine exactly the maximum copies of
 the divisor that they can take from the dividend.
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 This feature is a source of anxiety because students
 """" often have difficulty estimating exactly how many

 off to the side until they find the exact one. Second,
 * - ~ tke current algorithm creates no sense of the size of

 are always multiplying by single digits. In the

 erally only multiplying 46 by 6. Thus, students have
 _

 when they are using the current U.S. algorithm.

 "~~"

 - m -

 tiply by the correct number, that is, 60, not 6. The
 "™" - - - procedure is easy for those students who are still

 gaining mastery of single-
 digit multiplication, because
 it permits the use of readily
 known products. For those
 who can manage it, the
 method can be abbreviated to

 be as brief as the current

 algorithm. Educators have
 used this accessible division

 algorithm in innovative mate-
 rials since at least the 1960s.

 The example of the acces-
 sible method given first in
 figure 1 shows a solution
 that a student might do very
 early in division learning.

 Conceptually, the drawing and the written algo-

 division: It is like a puzzle in which the solver takes
 _ _ ___ - away COpies of the divisor - here, 46 - until no fur-

 the equation "46 x ? = 3,129" using the notion of
 _ _ __ __ division as the inverse of multiplication. The draw-
 , ing shows these copies being added to make the

 total 3,128 as 46 x 68 (remainder of 1), and the

 '.,r.....^.

 taken away. The drawing can scaffold the one-digit-

 300 to make 2,300. The scaffolding is important
 -

 is complex for some students. The example shows
 that the student elected to multiply by 50 because

 -

 student then sees that he or she can simply take
 " *~~~ ~~~ ~~~ away another 10 copies of 46. The student next
 __________^___^_ cleverly uses a product that he or she has already

 found (50 x 46) to take away 5 copies of 46. Dou-
 bling is also easy, although many students would
 probably have multiplied by 3 at that point. Succes-
 sive doubling represents the basis of the multiplica-
 tion and division algorithms used historically in
 Europe. The right side of figure 1 gives a version of
 the same problem that the same student might com-

 plete with more experience. At this point, the stu-
 dent may not need the drawing to scaffold the steps,
 meanings, or multiplication operations.

 The accessible algorithms for multiplication and
 division depend heavily on fluency with multiplica-
 tion and addition, and in division, with multidigit
 subtraction. The difficulties that many students
 have in subtraction noticeably affect division, so
 understanding and fluency in multidigit subtraction

 are very important. Because students typically
 range substantially in their multiplication learning
 rate, many of them may not have achieved full flu-
 ency by the time their class is discussing multidigit
 multiplication and division. An advisable tactic is to
 give such students a multiplication table that they
 can use to check their multiplications as they go.
 This aid will permit them to keep up with the class
 and learn an algorithm. Furthermore, each verifica-
 tion of, or search for, a product in the table creates

 another learning trial for basic multiplication. Of
 course, presenting separate learning opportunities
 for multiplication combinations with which the stu-
 dent is not yet fluent would also be helpful.

 Multidigit Computation
 in the Twenty-First
 Century
 How much valuable school mathematics time

 should be spent on multidigit multiplication and
 division is a question whose answer will probably
 need continual revision during the twenty-first cen-

 tury. New goals will arise to compete with these
 domains, as they have already done. At present,
 time is well spent on conceptual and accessible
 approaches that facilitate students' understanding of
 how to build multidigit multiplication and division
 from the central concepts of place value and basic
 multiplication combinations. During that time, stu-
 dents could also bring those combinations to mas-
 tery. Drilling for long periods on problems involv-
 ing large numbers seems a goal more appropriate to
 the twentieth than to the twenty-first century. The
 new research-based view of achieving computa-
 tional fluency is a more complex and connected
 view than the past linear view consisting of count-
 ing, memorizing facts, solving problems, learning
 algorithms, and then solving problems with those
 algorithms. However, a new, more complex view is
 necessary to achieve the new, more complex goals
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 of mathematics learning and teaching necessary for
 the twenty-first century. A new kind of computa-
 tional fluency is needed for the challenges and
 changes that individuals in the United States and
 Canada will face in the years to come.
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