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Introduction

In this chapter we will present theoretical descriptions of children’s conceptual
structures for 2-digit numbers and examine issues concerning how to support chil-
dren in learning and using these conceptual structures in 2-digit addition and sub-
traction. We first briefly overview some aspects of our teaching approach in our cur-
rent Children’s Math Worlds project. We then summarize the UDSST Triad Model
of five concepiual structures for 2-digit numbers used by children who speak Euro-
pean languages. Next we describe an initial portion of our local instructional theory
for helping children construct the three most advanced conceptual structures. Then
we describe and discuss methods of 2-digit addition and subtraction and how these
relate to problem sitnational structures and to 2-digit conceptual structures. We dis-
cuss classes of conceptual supports for 2-digit numbers and calcufation, relation-
ships between solution methods and conceptual supports, and six issues concerning
implementing vertical mathematization and reflection in the classroom. We then
briefly consider issues surrounding mental calcuiation.

We will use throughout the chapter the term ‘method’ rather than ‘strategy’ or ‘pro-
cedure’ for the way in which a child solves a 2-digit problem. ‘Procedure’ has for
some readers a negative connotation of a rote method done without understanding.
‘Strategy’ implies some level of thoughtfulness and a choice of amethed which may
not be present for a given solution. We therefore prefer to use ‘method’ as a neutral
term between these two extremes, and append adjectives if necessary for further def-
inition.
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Overview of Children’s Math Worlds project

Children’s Math Worlds is a project that is developing a mathematics curriculum by
working initialty and primarily in both English-speaking and Spanish-speaking ur-
ban Latino classrooms. We work simultanecusly to develop understandings and
maodels of children’s conceptions of single-digit addition and subtraction, multidigit
addition and subtraction, and word problem solving and to design effective teaching/
learning activities that are based on children’s understandings and are implement-
able in urban classrooms. The focus here is on our work in the mukltidigit domain;
see Puson, Hudson, and Ronr (1996} for a summary of word problem work and Fu-
son, Perry, and Ron (1996} for an overview of the single-digit work.

Typically in the United States children are taught multidigit addition and sub-
traction without sufficient use of physical materials that help children construct con-
cepts of multidigit numbers as consisting of groups of hundreds, tens, and ones, In-
stead many children view multidigit numbers as single digits placed beside each oth-
er {concatenated single digits); this view leads children to make many errors,
especially in subtraction where they typically solve 72 — 28 as 56. In the Children’s
Math Worlds Project, we use various kinds of materials to help children construct
conceptual understandings of numbers that they can use in computation. Because of
large numbers of children who enter with little background in urban schools, and be-
cause of the long time it takes many children to construct robust conceptual multi-
digit structures, we focus heavily on materials that can heip all children build meth-
ods that are generalizable to several digits. However, we also from the beginning of
the multidigit work emphasize children’s invention of mental {and sometimes aiso
finger) methods for solving various problems and continue this focus on invention
and exploration of different methods. Typically in our classrooms the top children
invent a range of methods, middle children use guantities and then move to a written
numerical method (often the traditional algorithms) that they can explain and under-
stand, and lower children struggle to carry out correct methods using ten-structured
quantitics. With help, most of the lower children can come to general numeric meth-
ods they can explain, but some of them need to continue to use drawn quantities for
long periods of time.
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Nanci's Method
49 + 25 = 6
Four tens and two tens {writes 6).
{Looks at the ones; erases the 6.)
| can make another ten, and then you count

the ones (fingers count 5 on to 9), writes 74.

Later she invents a way to record the new ten:

3
49 + .25 =74
Cinthiz’s Method
25 + 47

| took three from the five and put it with the
seven. Then | counted two pius four is six.
Then there is another ten, so seven tens,
and there are two left, seventy-two.

Later she invenis
5
48 + 2 =75

Viviana's Method

48 + 23

Forty and two tens makes sixty,
Eight in my mind. 68, 9, 10, 11, 71.

Martha and Rufina’s Methods

! 1
37 + 26 = 63 15
48 + 16 = B4 + 29
S

Jorge's Method
56 + 27 =
4
| know these are tens.
50, B0, 70. Then | counted 7 (7 fingers up):

71,72,73,74,75, 76, 77. Then | counted &
more (8 fingers up): 78, 79, 80, 81, 82, 83.

Karina's Method

Eiglilt. \Eighiy seven
{counis on fingers, 6 fingers)
8,9, 10,90, 93

ilethods of Marking Tens and Ones

0 TO
34 + 18 = —

g +1le =

47 + 28

25 + 47
\%‘//

fieare 1 mental and writteny nameric 2-dioit addition methode
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To overview the early phase in multidigit addition, Figure 1 displays a few of the
methods first graders near the end of the year invented when given horizontally pre-
sented tens and ones and challenged to see if they could find ways to solve them
without drawing all the tens and ones. Notice that afl the methods involve shifts be-
tween external and internal compositions of tens and ones. All at the very least in-
volve written numbers serving as external memories that enable children to point out
and focus on parts and then later return to other parts without “forgetting’ them, as
they might for orally presented problems. Jorge (56 + 27) points to the S and the 2,
emphasizes that they are tens, can and does count on tens from 50 keeping track in-
ternally (50, 60, 70, then uses 7 external finger counters to count on ones and then
6 more fingers to count on the rest of the ones in the problem. Nanci (49 + 25) com-
poses 4 tens and 2 tens as 6 tens (internal fact), writes it {external token), looks ahead
at the 2 + 5 ones, erases the 6 and says ‘I can make another ten’, increments the six
tens to seven tens internally and then writes the 7, then uses fingers (external ones
tokens) to count 5 onto a mental 9 ones. She also knows to avoid using the ten again
when counting on 9 + 5 (because she already incremented her tens before finding out
exactly how many ones there were). Cinthia (25 + 47) seems to make visual use of
the written numbers, allowing her to take ‘3 from the 5 ones and pur it with the 7 to
make ‘another ten’, and still retain that there are ‘2 left’ (from the 5). Knowing that
3 was needed to make ten, and being able to take 3 from 5 and know what is left,
appear to happen on the fact level. Karina (37 + 56) also makes use of breaking the
sum of ones into ten and ones left, but does quite a range of other methods as well
(not shown in Figure 1). Viviana, except for use of the written number problem (48
+23), seerns to count tens and ones entirely internally: *Forty and 2 tens makes sixty
(note mixture of sequence tens and separate tens), 8 in my mind. 68 (mentally ad-
Joining 8 ones), 9, 10, 11, (converting 11 into ten increment from sixty to seventy
and one more) 71.°

Not only can different children work at different levels in the same classroom us-
ing external quantities, external tokens of them (fingers, written numbers, drawn
tens and ones), and internal versions of quantities and words, but even advanced
children find it helpful to weave methods across internal and external countable tens
and ones, possibly to distribute processing burdens. The variation, even beyond af-
fording accommeodations to individual needs, seems to be helpful in stimulating
thinking. Some children in this first-grade classroom preferred to continue working
exclusively with quantities. Although we expose children to the challenge of com-
posing tens and ones by media other than external tens and ones, we also let children
do whatever they need to do to solve problems.

A major issue at this stage for many children was differentiating and remember-
ing which of the numbers were tens and which were ones. Because we gave prob-
lemns horizontally to force children to attend to this differentiation, children invented
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varied and elaborate scaffoldings to mark which were tens and ones. They under-
lined tens, drew loops and lines to connect the tens, drew separating lines between
tens and ones, and labeled tens and ones. Rapid correct tens and ones interpretations
are crucial to any internalization of multi-step 2-digit operations. Children have to
chunk partial resuits and so have to know what to chunk with what. If they have to
spend much attention on what goes with what, they can easily overload memory,
lose track of what they are doing, and forget the numbers invoived in the situation
or their already obtained partial results,

Analysis of the mathematical domain

A model of conceptual structures used in the domaln

Earlier literature identified three correct conceptions used by children in the United
States: a unitary conception in which children count a 2-digit quantity by ones, a se-
quence concepticn in which they count by tens and then by ones, and a separate tens
and ones conception in which the units of ten and the units of one are counted sepa-
rately (see Fuson, 1990a, for a review of this literature}. For example, if counting 3
bars each made from 10 unifix cubes and 2 extra cubes, children using a unitary con-
ception would count all 32 of the unifix cubes (1, 2, 3, ..., 32), children using a se-
quence-tens conception would count ‘18, 20, 30, 31, 32, and children using a sepa-
rate-tens conception would count ‘1, 2, 3 tens and 1, 2 ones. 32.°

Children also use a concatenated single-digit conception in which the 2-digit
number is thought of as two separate single-digit numbers. Because any single-digit
number can be added to or subtracted from any other, this meaning cannot direct or
constrain addition or subtraction methods. It leads to many well-documented errors
(e.g. see VanLehn, 1986, for a discussion and examples). This concatenated single-
digit meaning arises when insufficient opportunities are given to children to link ac-
curate multi-digit quantity meanings to the written numerals in use in adding and
subtracting.

In Fuson et al. (in press) and in Fuson, Smith, and Lo Cicero (in press), we ex-
tended this earlier work to a UDSSI Triad Model named for the five correct concep-
tions described in the model: unitary, decade, sequence-tens, separate-tens, and in-
tegrated conceptions, The UDSSI Triad Model is shown in the main part of Figure
2 (taken from Fuson, Smith and Lo Cicero, in press). Our view of these conceptions
is that they involve a triad of relationships between quantities, number words, and
written number marks. With single-digit numbers, there are three 2-way links in the
triangle formed by these quantities, words, and marks (see the top left corner of Fig-
ure 2). Bach 1-way link describes the numerical aspect initially seen or heard and the
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aspect that is linked to it; for example, I hear ‘five’ and think/see/can write 5 (bottom
lefi-to-right arrow) or I see five birds and think/can say ‘five’ (left arrow from top to
bottom). The user of the concatenated single-digit conception {top left) constructs
these six relations for each of the pairs of single digits in a 2-digit number.

Children’s early conceptual structures are shown on the outside of the big trian-
gle in Figure 2. All children begin with a unitary conception that is a simple exten-
sion from the unitary triad for single-digit numbers. With this conception, the sepa-
rate number words (c.g. twenty six) and the two digits (e.g. 26} do not have separate
quantity referents. The whole number word (e.g. sixteen) or whole numeral (16) re-
fers to the whole quantity. With time and experience, the first digit takes on a mean-
ing as a decade in the decade and ones conception, and the second digit takes on a
meaning as the extra ones in a decade. The nuinber marks for this decade conception
can be better understood if one thinks of the ones as written on top of the decade
guantity {the arrow in Figure 2 shows the 3 going on top of the 0 in 50). This con-
ception of a 2-digit quantity as a decade and some ones was identified by Murray
and Olivier (1989). It leads some children to write number marks as they sound: as
50 and then a 3, so 503.

The sequence-tens and ones conception develops out of the decade conception
as children becomie able to count by tens and to form conceptual units that are groups
of ten single units (these may arise independently). Initially with the sequence-tens
conception, there is no immediate knowing that there are five tens in fifty, though a
user of this conception could find out by counting ‘190, 20, 30, 40, 50" while keeping
track of the five counts,

Some children have experiences in which they come to think of a 2-digit quantity
as composed of two kinds of units: units of ten and units of one. When adding or sub-
tracting 2-digit numbers in this way of thinking, children count, add, or subtract the
units of ten and then count, add, or subtract the units of one (or vice versa}, leading
to our designation of this way of thinking as the separate-tens and ones conception.
In Figure 2, we show these units of ten as a single line to stress their (ten)-unitness,
but the user of these units understands that each ten is composed of ien ones, and can
switch to thinking of ten ones if that becomes unseful.

Children's construction of the sequence-tens and separate-tens conceptions
seems to depend heavily on their learning environment, though individuals in the
same classroom may construct one or the other of these first. Which is first may part-
ly depend on whether a chiid focuses on the words, which facilitate the sequence-
tens conception, or on the written numerals, which facilitate the separate-tens con-
ception.

Children may eventually construct both the sequence-tens and separate-tens con-
ceptions and relate them to each other in an integrated sequence-separate conception
(these connections are shown in Figure 2 as the double arrows). Children connect
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fifty and five tens, and the written marks 53 can take on either quantity meaning (fif-
ty-three or five tens three ones).

Although we had originally conceptualized each of the 2-digit conceptual struc-
tures as a triad of six relations, it later became clear that only the separate-tens and
ones conception has direct links between quantities and marks, and then only where
the quantities of tens and ones are small enough to be subitized (immediately seen
as a certain number of units) or are in a pattern. The other three conceptions must
relate quantities to writien marks via the number words by counting. Therefore the
link between quantities and marks is not drawn in Figure 2 for these conceptions.

Learning to construct and operate on 2-digit quantities in Children's
Math Worlds

There is a widespread cultural activity in which young children invest considerable
efforis on their own, before entering school, that can serve as the point of departure
for activities helping children to appropriate the grouping and counting processes at
the core of the base-ten number system and mult: unit arithmetic: Children try to ex-
tend their counting sequences. They initiaily try to do so by directly extending the
chaining process by which they have memorized the first ten number names, and
then they make use of what regularities are accessible to them. The number names
give a pattern of x-ty 1 through x-ty 9 chunks {e.g. 21 10 29), then a shift to some
new ‘x-ty’ word, to which a further x-ty 1 through x-ty 9 chunk can be appended.
However, the English number names do not clearly signal the order of the decade
words. ‘Forty’ is not obvious as a verbal abbreviation of 4 tens, and the rest of the
first 5 decade names are either irregular (the teens) or offer even more obscure ref-
erences {‘twen’ for 2, ‘thir’ for 3, ‘fif” for 5). Children are reduced to attempting to
memorize which ‘ty’ word comes next, amidst the interference of intervening x-ty 1
through x-ty 9 cycles. The errors children typically make reflect precisely these
chunks, but with a confused decade list, e.g. 1 10 29, 50, 51 to 59, 30, 31 to 39, 20,
21 to 29, 40, etc. (Fuson, Richards and Briars, 1982). Cross-sectional data indicate
that it takes children in the United States on the average about one and a half years
1o learn how the decades themselves are ordered (Fuson, Richards and Briars, 1982).
Further, this learning is frequently interactively constructed as if it were a simple
searching for the next ‘ty’ word. The adult or child audience either immediately sup-
plies the correct word to fiil the pause or waits for the counter to make a guess and
corrects if necessary. The child then marches rhythmically through the next x-ty one
through x-ty nine chunk, to the next memory search for the next decade word.
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figure 2: a developmental sequence of conceptual structures for two-digit numbers:
the UDSSI triad model
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Helping children to build a generative core of base-ten quantity,
number word, and number marks interrelationships

We have found that many urban first graders, some second graders, and a few third
graders cannot count to 100. We therefore have had to design activities to help all
children learn to count to 100. We begin by responding to children’s search for the
next decade word, not in the framework of memorization, but by showing them that
they can learn to figure out what the next decade word is going to be. We try fo
make the relationships at each ten between the number of groups of tens (e.g. three
tens), the name for how many things are in those tens (e.g. thirty), and the written
number marks (30) accessible for learning and understanding. We simplify chil-
dren’s access to this network by centering the task as seeing and counting groups of
ten (‘one ten, two tens, three tens’). This is a simple extension of ordinary counting,
and may even be, at least initially for some children, ordinary counting (i.e., the
*tens’ are not yet units of ten or perhaps not even ten ones for them, initially). This
count of iens then is linked to written number marks as telling how many tens (10,
20, 30} and to number words (by counting all the things inside the tens to find out
how many are in that many tens).

Figure 3 is simultaneously a model of the conceptual structures children need to
construct in learning to count to 100 by tens and by ones using decade, sequence-
tens, separate-tens, and integrated tens conceptual structures and a model of the
teaching activities we design to help them do so. Children enter the network at 1a
(using a mental grouping action to focus on the ten). The teacher then introduces the
possibility of using the count of tens groups to figure out how to write and name the
number (1b ir Figure 3). We will describe that process below. The bottom half of
Figure 3 is the later internalization of all or parts of the initially external counting
activity, though, of course, many aspects of the top model are infernal conceptual ac-
tivities from the beginning of conceptual counting. Figure 3 shows at the top the ten
groupings we used in the Children’s Math Worlds project. These are strips of card-
board each showing ten pennies; on the back is one dime (the U.5. 10¢ coin). Below
the penny strips is shown the beadstring used in the Dutch program. The activities
we use in the classroom are designed to help children build sequence-ten and sepa-
rate-tens conceptions and relate them to each other.

Couniing by tens, counting the tens, number marks, and number
names

We begin by building up tens grouping experience and exploring the relationship be-
tween tens groupings and count words. We ask, for example, ‘How many groups
of ten can you make from 30 pumpkin seeds?’ and conversely, ‘If you have 3 groups
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of ten pumpkin seeds, what number of pumpkin seeds do you have? We finally dis-
cuss ‘Ts 3 tens the same number as 307" Children are initially divided in their opin-
jons on that question: The ‘same number as’ concept is as much under construction
ag it is a tool in early grouping discussions (Baroody and Ginsburg, 1985; Fuson,
1988), and counting as a criterion is vulnerable to a lack of counting expertise.

But systematically iterating the ‘x tens -> what number?’ question quickly builds
up counting expertise and establishes the core of base-ten quantity, word, and nu-
meral interrefationships (see 1b in Figure 3, ‘the tens count process’ for a model of
this process). A specific account of one way of building up this core may be helpful.
The teacher puts up I group of ten (we use strips of 10 pennies, but any objects
grouped by ten will do), counts the pennies by ones with the class, discusses the writ-
ing of ‘10’ below the penny strip in terms of its meaning as ‘one ten’ and (pointing
to the zero ‘10°) no ones extra.” Here, the links of the words to the written numerals
and their left-right positions are crucial and are emphasized by gestures. The teacher
then puts up another ten and asks ‘How many tens now’, eliciting the answer from
the children and then modeling getting the answer by counting the tens, ‘1 ten, 2
tens’, and again writes that answer, that number of tens counted (20), below the pen-
ny strip (again connecting the left-right positions to the number of tens and the num-
ber of ones). The goal of this part of the activity is to help children learn that if they
can count the number of tens, they can write the correct 2-digit numeral: the 2-digit
nuneral means the number of tens. Finally the teacher asks, ‘2 tens is what number?
At this point the number name ‘twenty’ can be cued by a range of meaningful sourc-
es. More knowledge is pointing to it than just one (maybe memorized, maybe not)
link in a verbal chain (19, 20). Some children may already have grasped the gist of
the initial ‘same number’ discussion, or at least be cued by it. Some will have written
numeral -> number name knowledge (‘20" -> ‘twenty’) and are cued by that. Some
first graders know that ‘ten and ten makes twenty’ and volunteer that. Some will
have rapidly counted by ones while the teacher was posing the question and volun-
teer ‘twenty’. This is a process of social elicitation: Some in this cultural pool invari-
ably use one or another of these cues. The teacher can further establish this linkage
by leading a choral count of the individual pennies to ‘check’ if 2 tens is ‘really’
twenty (most first graders can count to 20). Finally, a chaining mechanism of tens is
evoked to establish a counting sequence. The count of tens built up so far is reiterat-
ed ‘1 ten, 2 tens’ {while pointing to each strip) and also ‘ten, twenty’ (also while
pointing to each strip). But this sequence of counting by tens now inherits the range
of links that effectively cue it for that individual.
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For each remaining decade to 100, the mappings between the number of tens,
nurnber marks, and number words can then be elicited from the children themselves,
almost without error, by adding 1 ten, then reiterating the questions referred to
above: How many tens now? How do we write x tens? X tens is what number? With
sach added ten, the accuracy with which the number name is inferred increases
(Smith, 1994). Over several such counts, most children learn to figure out the num-
ber name by this counting of the number of tens. A generative activity replaces
memorization. Over a few days, many children learn to count tens both ways (count
the tens and count by tens) and to map reversibly between each combination of the
number of tens, written numerals, the number of ones, and number names. They can
also quickly learn to add tens quantities (e.g. 60 + 30) because they can now con-
struct and count them (if they have physical tens groupings with which they can
work or which they can draw).

The teacher orchestrates further performances of various counting activities us-
ing the generative-tens model. Some children inttially participate only with tens and
ones words because those are the simplest. Increasingly, children come to fill in
more and more parts of their own web of knowledge within counting activities. All
the complex links involved are made by the teacher in different ways in different ac-
tivities. The focus is continuously on helping children to link the number of tens, the
wrilten number marks, the number names (how many things in all), and the number
of ones, and to negotiate the ones/tens and the tens/ones counting shifts. This focus
continues throughout the 2-digit addition and subtraction activities, which are
viewed as settings within which children can build up and use their 2-digit web of
knowledge.

Counrting things by ones to 100

For children to learn to use the tens count to support counting to 100 by ones (step
2 in Figure 3: the ones-to-tens shift) requires a further Iayer of interactive attentional
direction, directly corresponding to an extra layer of complexity in the activity. Fig-
ure 3 portrays the extra layer of attentional directives involved in shifting from
counting ones to using the grouping and incrementing tens process discussed above,
This layer of attention is again (as with the tens count) established interactively in
the classroom, via questions. The point is to help children replace pausing and
searching memory for the next ten with pausing and framing a question. If a child is
at twenty-ning, for example, and pauses, what frames the question is realizing that
sfhe now has counted up to twenty and fen, or another ten. This is the ones-to-tens
shift. Once s/he asks the question, how many tens now?, s/he has shifted into the tens
count process, discussed above and shown in 1a and 1b. The use of external tens
groupings (see examples at the top level of Figure 3) is quite important here because
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the child can then simply count the number of tens so far, including the new ten.
With more experience, a child may anticipate this process and abbreviate it, keeping
track of the tens alieady counted, and knowing that one more ten is to be added: ‘2
tens, and one more ten makes three tens, thirty.” As that anticipation becomes con-
sistent, so that a child is looking forward to the next ten (thirty) while counting up
towards it in the twenties (see 3 in Figure 3), the counting sequence is becoming au-
tomatized, but now in the correct order, and with countable tens groupings embed-
ded in it.

Through such activities, these countable tens are simultaneously building up rap-
id reversible mappings between quantity, number word, and written numeral uses,
as sketched above. A number of tens can be produced in any of these forms (and add-
ed as well), given any other. Tens can be counted and produced as separate group-
ings as well as in sequence form.

Join tens and ones counting

But tens and ones cannot yet be counted or produced jointly to find any 2-digit num-
ber without a further layer of attentional directives. We have found that children can
map a range of ten relationships, and be able to discriminate tens and ones, without
being able to count them together. The tens count has a momentum once it gets go-
ing, and kids simply continue that tens count onto any ones present (Smith 1994; Fu-
son and Smith, 19935). Figure 3, at the “Join tens and ones counting’ level (step 3},
portrays the layer of attentional directives involved. Children need to anficipate that
some extra ones as well as some tens are to be counted, and maintain that anticipa-
tion sufficiently to monitor when all the tens have been counted, and then stop count-
ing tens. They then, or earlier while tens-counting, need to prepare for the tens/ones
shift of units (from units/groups of tens to units of ones) and of the counting se-
quence (from counting the tens or counting by tens to counting by ones from one or
from the decade word). If they were counting by tens (ten, twenty, thirty, forty, fif-
ty), they need to know that ‘fifty and one more is fifty-one’. That is, they need to
understand at the ones level a relationship of ‘another entity’ is ‘+1" is ‘the next count
word” within the unitary/decade count sequence. The counting by ones sequence
also has to be familiar enough that children can easily negotiate this while remem-
bering their tens count of *fifty’; kindergarten children sometimes forgot their tens
count result when initially attempting the tens/ones shift (Sinith, 1994). If children
were counting the tens (‘one, two, three, four, five tens’), the tens/ones shift is easier:
They jusi start counting from one again. But the cardinal joining of the tens and ones
at the end of both the tens counts and the ones counts is simpler for the sequence-
tens than for the separate-tens words because ‘fifty eight’ carries a joining from the
urpitary and decade conceptual structures. Managing everything in either tens/ones
shift is demanding, and it takes most kids repeated efforts to do so consistently.



Analysis of the mathematical domain

Again, this layer of attentional directives is established mnteractively, via ques-
tions, but a very simple question usually suffices to enable children to self-correct
their errors: When a child misses the shift and counts ones as tens, a helper asks, ‘Are
those tens?’. This is often enough to engineer a shift to counting ones at that point,
though multiple attempts across multiple sessions are often required to establish it
consistently (see Smith, 1994, for a study of kindergartners negotiating this shift and
Fuson and Smith, 1995, for a case study of first-grade peer tutoring with adult help).
For some children, more scaffolding may be required, €. g., “What are they?” (ones)
*So fifty and one makes...’ (children can usually then continue the rest of the way
to the next tens-ones shift).

With the ability to count jointly separate external tens and ones groupings into a
whole number, or produce separate tens and ones from a verbal or written whole
number, children have a minimal core of processes sufficient for adding 2-digit
quantities with regrouping as well as other uses. We also help children develop right
away other tens counting and adding processes to explore and use in multi unit arith-
metic (this is often labeled ‘mental addition’: we will address this below). In partic-
ular, we develop counting on from 2-digit numbers as a basis for a broader develop-
ment of 2-digit addition and later subtraction. Children keep track of such counting
on with fingers or other means. Thus, we try to make available as rapidly as possible
the whole range of solution methods to be discussed later by asking children to try
to solve some problems without drawing all of the quantities, while of course allow-
ing those who really feel that thev need to do so to draw them.

Another naturally-occurring cultural activity begins to elicit internal tens and
ones models: coin counting. Counting dimes and pennies extends counting-tens-
and-ones experience to an activity in which children must overcome the perceptual
influence of a dime as ‘one’ thing rather than as a visible ten (see Fuson and Smith,
19935, for a case study of such difficulties). Adding nickels to dimes and penny situ-
ations requires a child to construct a method for tracking the ones to be counted on:
anickel (5¢) does not offer 5 ones to count externally, but children can use 5 fingers
or learn to count on by 5's. Another aspect of counting on, being able to start at any
point in the counting sequence, is developed with other kinds of problems (e.g. A
soda costs 43¢, but you also have to pay 4¢ tax. How much do you have to pay?).
Being able to count on from any 2-digit number can be leamed conceptually in the
same manner as single-digit counting on (see Fuson, 1988, for a summary). The
main constraint here is an insufficiently learned count-to-100 sequence. Such prob-
lems also give practice in counting over a decade word, which some children need.

2-digit additicn

With experience building up in parallel in both counting external tens and ones and
counting on that involves internalized abilities to start counting at any point in the
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sequence (without counting up to i) and the construction of tracking methods (e.g
fingers) in lieu of tens or of ones to count, children can construct a wide range of
methods for 2-digit addition, However, some need to continue working with external
tens and ones for a long time. Indeed, 2-digit addition with regrouping actually
serves (o consolidate competence at counting external tens and ones. Children who
are still constructing the sequence-tens words can use tens and ones words and
counts while in other activities working on their counting by tens.

Two-digit addition in this mode minimally requires constructing two sets of tens
and ones, then counting the tens and ones together. Children don’t even have to con-
sciously regroup if they count the tens first: They can continue counting ones in the
sequence across decades. Some first-grade children may at this point still be confus-
ing which are tens and which are ones in 2-digit numbers (due to left-right confu-
sion) or occasionally count ones as tens, The examples given earlier demonsirate the
range of methods some children can construct while others are still siruggling with
basic place-value and 2-digit concepts. We view 2-digit addition problems in whick
the ones exceed ten (e.g. 38 + 26) as excellent activities within which children car
continue to construct and use ten-structured 2-digit conceptions of numbers.

Two-digit addition, subfraction and unknown addend
methods: lssues concerning problems, nstructional
seguences, conceptual supports, and number words

2-digit addition and subtraction methods and their developmental rela-
tionship to problem situation structure

Methods used by children to solve 2-digit addition, subtraction, and vnknown ad.
dend problems are shown in Table 1; these methods were used by chiidren in fow
projects that emphasized learning mathematics with understanding (Fuson et al., ir
press). Table 1 has been adapted from Fuson et al. (in press) to label in bold the
methods identified by Beishuizen (Beishuizen, 1993, this volume; Klein, Beishuizer
and Treffers, in press) that are used by Dutch children receiving instruction using
traditional textbooks, using a Realistic approach with an empty number line, or using
a Gradual approach with an empty number line. See Beishuizen (this volume) for
more detailed descriptions of the methods in bold.



, subtraction and unknown addend methods

ition

it addi

igi

Two-d

98 '¥9 <— 9+ 85 <— g8 + 06 <— 0T + 0E
92'79'E9'29°18'09°65'85<—qB+05'0F 0E

sQL/lov
83U0 Jayio dn ppeydn Junco ‘seuo

feuibue ppe ‘sus) dn ppesdn junon

BE <— 9 - ¥¥ < gk + Ob <— 02 - 09
BE'SE 0P LY EV EY qry 0P 05 0O

ShL/ENS

$2UC J3UJ0 10BNqNSAIMOP UNOD 'SaUo

[2uiblio ppe ‘sua) 10eRGNS/UMOP JUNOD

P9 <— 9 + 85 <— g + 0§ <— 02 + 0€
¥9'€9°28°19'09'65'85'05' 04708

50L/0V
$3U0 18)0 UC pPDE/UOD JUNCI

'S8UO ppE ‘SUS] UO PPE/UQ UNDD

SBUG JaYl0 10BA0NS/PPY ‘SUQ [euiBLiO Yilpy Jequiny sousnbag axely 'sus) 10B1qNS 10 PPY SPOLIS PeXI

gz dn pappe oesq desy (uo ppe ey
9z dn psunoo jzen deey Uo Junos ay)|

0LY/LOV
S8U0 Jo 188] Uay] sus) dn ppe/dn junon
‘ue) B ayew o} dn ppesdn unon

9z dn ppe Moel} deoy 'uonippe &y

JeIN/LQY
2OE] BUIOO PUB JOOUSIAAG

9¢ dn ppe joei desy ‘uc ppe 8y
9z dn 1unod HorJ desy ‘Lo JUNOD By

GLN/LOY
S8u0 usyl ‘sue) dn ppesdn Junos

BE <— 2 -0F <—02-0% <— -~ +9
ge'6e'0¥ 0509 19°28'E9' PO
sly/dns

S3UO JO }S8) UBYL SUS] 1DBRANS/UMOP
1UROD 'us} B SH3BW O 10BLqNRS/UMOP 1UNoH

88 <— ¥ + & <— 0€ - ¥@

8E J0LN/ENS
i1 ARy 30D PUB J00YSIBAQ
92 -

¥8 088 <— 9 -pp <— 02 - 09
BE6E OV LT BF'EP PP PG YO

{88=g-0% ‘C¥=F-¥¥] QLN/EHNS
SOUO USLY) SU8} IPEIGNS/UMOP 1UNCD

PO <— $+ 09 <— Q0+ 0F <— g + 8E
PO'EQ'29° 190905 0¥ '6E°8E
(ro=t2+0r] GlY/AY

$BUOC JO 1S8J Liel} SUS] U0 PRPB/UGC JUNoD
‘L8] B 8BLU O] UO PPBAIO JLUNCH)

P9 <~ - 89 <— 0F + 8¢
JOLN/OY

pAoeq 8ol pue J00ySIaND

b2 <— 9+ 85 <— 0g *+ 8E
¥0'€9'29'19'09°65°85 '8 88

[Fe=p+0o ‘09=c+8S] GiIN/AV
SBUO UBL) SUS] Lo PPeMAD WIR0Y

vg =[] + 8

0 =92 - +9

O=92+8c

SaUQ pue sus| Ag eseRio8(] JO BSERIOU| SPOUIe JAqUINN-2UQ-LIA-LIBag




Supporting multiple 2-digit conceptual structures and calculation methods

8 € <— 8 0¢€ 8 € 8 € 8 € v9 ¥ 9 v 9 v9
A 9 - (oA 96 -9¢= 9 ag- 9oF geF goF 9eF
v 9 v 0 G<—¥9 v_ww, v 9 9 8¢ 8¢ mw, 8¢
S 0)S ¥, S l 14
sus) 10BIIgNS ‘sauo joelqns ‘Su) Ppe ‘SUO PpE ‘S8u0 Q| Wolj ud) | aew
10 $8UO JoBNIgNS ‘sud)] JoBqns 10 S8UO ppE ‘Sus) ppe ‘Seuo Q| Wolj us) | exew
uay) ‘[us} & uado] ue} | wol} s8Uo Ol el uay) ‘Jequiswal 10 piodal ‘gL I SBUO [e]O} §| 89S O} %007
aseymAiane JoeAqNS 1o ppe uay) ‘dnoibey :SPoYIeN saUuQ-pue-sus | -9sodwooe(
. 8 €
Jol1e [eoldA) e si 8e=2-0v0S ¢ ¥ G 9sels 10
Zr<—2=9-108 52 Vo & ¥9
ynop Sl 2 =9 - ¢ 9 D) 0% 9 v PT
vL S 7l V.9 viS 0S
|0y ayj ul, sauo 9 ¢t 9 ¢t 9 ¢+ 9 ¢t 9 ¢t
1o ‘Buimo jo siequinu aanebau 8¢ 8¢ 8¢ 8¢ 8¢
poylew Buipeocaid se swes Jo uopou awos salinbai siyl
s[ej0} BuIquIod 0L0L/ENS S[EI0) BUIqUOD seuo Q| Wolj us} | aew seuo O} Wolj us) | ayew
‘su@} 10BlIgns ‘sauo joenqng ‘seuo joeligns ‘susl 1oeNans sus) ppe ‘seuo ppy 010 +/AQY ‘Seuc ppe ‘sudi ppy
dnoiBel usy) ‘@laymAIaAs JoBINS 10 PPY :SPOYIB|\ SBUQ-PUB-SUd -8sodwoos(
9¢2-v9 9¢ + 8¢
8¢ siaquinu
Bl o flodeuR) BRE b9 <— bz + Oy <— 2 - 92 'T + 8E
v,9 :adoin3 ‘eouswy upe
9g <— 99 01 dn Of <— pg + ¥9 ‘¢ + 8¢ 86 <— 08 - 89 <— p¥ + ¥9 ¥ + 92 olv/av
(je101 8y Buureiurew)
aouaIayp urelurew o} Jayio ebueyo aouslelIp UlejuleWw o} laylo abueyd aleguinu sua} e ayew 0} 1dYjo
Jequinu SUS) B Jequinu [eniu} e3ely  ‘1aquinu sus} B Jsquinu paloelqns SXen 8y} 0] Jaquinu 8UO WOl BUIOS DAON

spoyie|y siequinnN-yiog-abueyo




"wo-digit addition, subtraction and unknown addand methods

su0}-2e1edos J0/pue Susl-aousnbas Jursn SPOISUI PUApPE UMOUNUN PUE “UOTIORIIGNS “UONIPPE NIFIP-7 T 298}

“(sseud w) e 10

uosng Woy padepe ussg sey a|qel siyL “(spoyiew dn ppeydn JuUnoD pIemio)) Poyiew PUSRRE UMOLNUN US SB 2uop eq fell Spoy3EW SBUO PUR SUB)
-slededos o) uoioengns JBIp-s|fuig “lqUENU JBY) puy O] [BI01 U1 o) dn Buppe ualy pue fdws Jagunu puosas ay) ypm we|gold uonppe
syl Bunum Ag suop #q ueo sauo pue suar-aleiedas o) SPOYIS PUBPIE UMOLYUL “AgfeIuozZUOL Uslm 8q 0S|E AW SPOUISW SaU0-pUR-SUS]
-ajeledes ||y Jajdwis yonw ase BuidnosBal noyum swajqold ‘usl B JaAo BunorngnsBuppe o Bununos Aq o Anpldxe suop si SIYE
(5510 01 =W o} ug) jo Buluedo Jo seUo ua) wWol us) lsyloue Bunfew) Burdnodbes Bulinbar swelqoid Joj are s(qe; 8l W spoylaw ||y TBION
‘(ecuslelip Byl uonoEAgNS

ul pue {je0) sy} uolpp® Ul WelsuoD 1day aq jsnus Jeym Bulshjuco ‘pappe uey) Jeuyel peloBAgnsS Uslo S| Jeqind suy qnoypp s dals slUlp
"S8UO pUE SUS] se sdals om] Ut JO PEeIsUl

B2UC Je PIPPE & JsquInu &l 40 1584 31 Yolym Ui (Us) B 8B O} UG PPE Bousnbas) aAroge 1enf poyieul sy) Jo YUYl o} Aem JuaIBHp B 81 SIY Ly
'siosse Juenbay osje 2 3 Bupoenqgns

1o ¥ ey} ppe o) BumeBio) !ui 3oBg PAPPE BIB G SYI WOY SBUO SY3 USL) PUEB 181y PRJOBIGNS 242 SOLSWOS 9 8Y] W0y} sauo ay| -sious
wenbay (wsiqoid uonoengns e un aie way Bugsengns o (gg Ul g eyl 10 p9 weoy ¥ ey seuo jeulilo sy) Ut yorg ppe 0] m:_ﬁmmhou_m
(BE =2 - OF = 9% - 99 SeWIe0eq $9 10 ¥9 = g - 99 = 9z + Op S9WOD2g gg) ejesuadLod of Jemsue 2] ssBsI0ep

PUB 0%iqns/ppe "UoNoRIGNS/UORIPDE ASES UB @XBWI Ol JACWNY }52) Yl 9SBBIOUI Af[RUCISBOI0 Pasn Os(E S| polIsW sIy} Jo BsIanas Bl ]p

sua] Bunrm
[siy1 uees 10U aaEY BM] alojaq zado 8t

8 g C- g€ — ¥ suey 79

0<- 9¢ §¢ asele §g- arcge Bugum 9 I'e
8 4 9 ¥g Io kg SPOYIaW sus] ppe ‘seuo ppe alojeq G c+roses Jg +

v ‘drosfisl ey 1sn! yoo; asoy) Moo| 8¢ 0 8¢
slus] 1oelgns ‘usy SBUO oeligns 'us) B 5Ug) ppe ‘seuc 0| woll $8U0 ppe ‘ua} Jsyflous s| 8iay)
e uado ‘seuc jornang uado ‘sua) 1p2NGNS us} | eYeW ‘sauo ppy J| 8aS 0] 300} ‘sLial PPy

us) e Bulsdo pue Bunoengns ejeulsyly ‘us} Jeyjoue Bupnew pue Suippe sjeulsly

Butdnosbel pue Bugoengns/Buppe ejeuwlsly spoylay SaUQ-PUB-SUS 1-asodwooa(g




Supporting muliiple 2-digit conceptual structures and calcuiation methods

Table 1 identifies three kinds of 2-digit methods: addition methods in which two
2-digit numbers are combined to make a total, subtraction {take-away) methods in
which a 2-digit number is taken away from a larger 2-digit number, and adding-on
unknown-addend methods in which the unknown addend is found by adding on from
the known addend to get the known total {the number added on is the unknown ad-
dend). A fourth method can be used: taking-away unknown-addend methods in
which the unknown addend is taken away from the known total to reach the known
addend (the number taken away is the unknown addend). We did not include this
method in Tabie 1 because it was rarely used by children in our projects (most chif-
dren used adding-on unknown-addend methods instead).

The four classes of methods in Table 1 are taken from the literature about meth-
ods children use to solve single-digit word problems (see reviews of this literature
in Fuson, 1992a, 1992, 1994, where kinds of word probiems are relaied to kinds of
solution methods). The four classes of single-digit methods move through three (or
four, depending upon details of classification) developmental levels of increasing
abstraction and abbreviation. Children begin by direcily modeling the problem situ-
ation with obiects; they count out objects to show each number in the problem. They
later begin to abbreviate inittal modeling steps by embedding addends within totals,
and they use the number words themselves to show numbers in the problem (count-
ing on, counting back, counting up to, counting down to). Even later they chunk
small numbers within other numbers to use derived facts (e.g. 6 +7=6+6+1=12
+ 1 =13). Finally, they may know number triplets so that they can immediately gen-
erate an answer.

In the first stage, children’s solution methods directly follow the problem situa-
tion. At the number-word solution level, many children frequently solve a problem
using a method that directly models the problem situation (e.g. counting up to for a
Change-Add-To unknown change problem}. However, some children begin to free
themselves from the problem structure and select problem solution methods that dif-
fer from the problem situation (e.g. using counting up to for a Change-Take-From
uniknown result problem that formerly was solved by taking away). This freedom
can be facilitated by instruction that discusses such alternatives. Until this indepen-
dence of solution method from problem situation occurs, the solution methods in Ta-
ble 1 also tend to describe the structure of the underlying problem situation that is
solved by that method.

Many traditional methods of instruction have assumed that chiidren have only
two classes of methods: addition and subtraction. Children were to solve problem:s
by deciding which class of solution methods to use (i.e., whether to add or to sub-
tract). They usually were supposed to write a number seatence showing this method
(e.g. 14 - 8 = ?) and then carry out the operation shown in the number sentence. Re-
search in the 1970°s and 1980’s (see Carpenter, Hiebert and Moser, 1983, or the
above references for reviews) indicated that some children instead used number sen-
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tences to show the problem situation (e.g. 8 + ? = 14). Children forced to write a so-
lution sentence that differed from the problem situation often solved the problem
first and then wrote the selution sentence. Thus, word problem solving for children
goes through at least four distinct levels of conceptualization (Fuson, Hudson and
Ron, 1996). A solver first forms a situation conception: an initial conception of the
problem situation in the world (I have some apples of which I eat some). The math-
cmatical elements are then focused on to construct the mathematized situation con-
ception (e.g. 14 take away 8 to make how many?). The unknown is then focused on
o construct the solution method conception (e.g, 8 plus how many will give me 147).
That solution conception is then carried out by particular solution actions (e.g.
counting from 8 up to 14 with fingers).

Problem situations involving 2-digit quantities can be solved by unitary methods
just like the single-digit methods. Children’s external models for the mathematized
situation conception, the solution method conception, or the solution method itself
may be at any of the developmental levels, though the final level of known fact is
rare for 2-digit numbers except for special combinations such as 50 + 7 = 100. How-
>ver, many children also begin to develop conceptual structures for 2-digit numbers
hat enable them to carry out solution methods involving counting or adding/sub-
Tacting groups of ten entities. These more complex 2-digit solution methods fall into
he same four classes of methods identified for single-digit nurnbers and outlined
bove with respect to Table 1. Because children construct these conceptual struc-
ures using groups of ten only after they have reached at least the second single-digit
stage of counting on/counting up, they may already have some freedom from the
yroblem structure in selecting a solution method. However, this issue of the extent
of the freedom children can exercise in their choice of a solution method for given
oroblem situations (what Beishuizen, this volume, called ‘mismatches’) has not
been researched nearly as much as for single-digit numbers. Because the counting
lown methods tend to be so difficult, the counting down to methods may be even
nore 80. Therefore in Table 1, we only emphasize counting up to, because it has
seen found to be simpler than counting down for single-digit subtraction (e.g. see
iterature reviewed in Fuson, 1992a, 1992b). Using for 2-digit numbers the whole
ange of word problem types (see details in Fuson, 1992a, 1992b) is one way to stim-
1late a wider range of 2-digit solution methods. Problems asking children to find the
lifference may be especially productive because different children interpret such
sroblems in different ways (e.g. Beishuizen, this volume; Hiebert et al., 1996), Some
vork by Beishuizen (this volume), Van Eyck (1995), and van Lieshout (this volume)
lid indicate considerable dependence of solution method on problem structure. But
itile other work has been reported. Especially needed is work concerning various
dnds of instructional supports on this issue.



Supporting multiple 2-digit conceptual structures and calculation methods

Typeof Embodiment Medium
e g Objects Drawn Objects Drawn Numbers
and Objects
SIZE: : ; : 3 :
Tens & Ones 3 decimeters S centimeters . ! 4 Meter StIC'k
Cumulative Number line
length Beadning Open number line
11111111 0000
35
Thermometer
Cumulative Gold bars
?frgf:,ed % 100 number grid:
length) 10 rows or columns
of ten numbers each
Bead Frames: ten rows of
ten movable beads
Number of Base-ten blocks or unifix cubes -
groups H”Hnnunu I I lg ssese
OR 1 2 3 tens
Penny strips
i I OO OOOOO
E | KN
: I
° oM
e 32
o e 33
° ° 34
O O O ° O O O 035
10 20 30
DECADE: Any of the objects above Montessori cards
can be thought of as decade with objects plain
objects: 30 + 5 where both 3P0 ] |5
are counted by ones. E E E \'
[3]5]
N/
1
PLACEVALUE: E E E

Count fingers as ones
Count fingers as tens

Abacus
Poker chip Tens | Ones
computer ooo | QO

table 2: classes of object and drawn conceptual supports for 2-digit numbers
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There is a very complex intertwining of solution method, 2-digit conceptual
structure, conceptual support introduced in the classroom, and number words, Many
variations are possible. Before we discuss this intertwining further, we will turn to a
brief classification of potentially meaningful conceptual supports for 2-digit num-
bers and addition and subtraction methods with such numbers.

Classes of conceptual supports for 2-digit numbers and calculation

Table 2 shows different classes of conceptual supports that can be used in class-
rooms to help children construct conceptual structures for 2-digit numbers. The ma-
jor subclasses are size conceptual supports that show tens and ones, decade concep-
tual supports that show the decade and the ones, and place-value conceptual supports
that show 1-digit rumbers in different left-right locations (or taken from different
left-right locations for finger ones and finger tens). Within each major subclass are
shown three possible conceptual support media: objects, drawn objects, and num-
bers with drawn objects. Within the size conceptual supports are three subclasses.
Considerable research has focused on differences in children’s understanding ac-
cording to these subclasses. In general, Dutch researchers (e.g. Beishuizen, Grave-
meijer, Treffers) have tended to make sharper distinctions between the effects of
these subclasses than have U.S. researchers (see chapter with Discussions at the con-
ference).

Size conceptual supports can show tens and ones by cumulative length, by cu-
mulative area (a sort of folded area with adjacent ten-lengths), and by the number of
groups of tens and ones. Recent Dutch approaches have used cumulative length and
cumulative area conceptual supports: the bead string, the open number line, and the
100 number grid. CGI (Carpenter, this volume; Carpenter et al., 1995) and the Hie-
bert and Wearne project (Hiebert and Wearne, 1992, 1996) used number-of-groups
conceptual supports: base-ten blocks or Unifix cubes in groups of ten. Cobb proiects
have used the 100 number grid (Cobb, 1995} and number-of-groups conceptual sup-
ports: Unifix cubes in groups of ten and drawings of packages of ten candies and sin-
gle candies (e.g. Cobb et al., in press). The South African project has used place-val-
1e conceptual supports (bead frames to build sequence-tens), and some classes have
1sed Montessori cards without object drawings (Fusen et al., in press). In our Chil-
iren’s Math Worlds project, we have at various times used cumulative length con-
eptual supports (base-ten blocks as lengths; thermometers), number-of-groups con-
-eptual supports (base-ten blocks, drawn blocks, and drawn blocks with numbers;
senny/dime strips, drawn penny strips and pennies, drawn dimes and pennies with
wmbers; collections drawn as dots and ten-sticks of dots), decade conceptual sup-
orts (Montessori cards with objects), and place-value conceptual supports (finger
nes and finger tens: using fingers to count by ones or count by tens).
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Each of the types of conceptual support highlights particular aspects of the UDS-
S Triad Model of conceptual structures for 2-digit numbers. The size cumulative
fength conceptual supports parallel the form of the unitary sequence of number
words. As the tens within these conceptual supports come to be noticed and used by
children {e.g. the alternating colors of tens beads; large 10, 20, 30, etc. markings on
the thermometer), these conceptual supports can be used to construct and use the se-
quence-tens and ones conception. The cumulative area models foreground by their
rows of ten the sequence-tens within a unitary sequence, but children can use these
models at either level (unitary or sequence-tens). However, moving from unitary to
sequence-tens methods on the 100 number grid, i.e., coming to see vertical jumps
within the 100 number grid as a shorteut for counting all ten single jumps (as in-
creasing or decreasing by ten in one jump) may be quite slow or be done without un-
derstanding (Cobb, 1995; Fuson, 1996). Drawing ten more squares after 36, and then
10 more squares, etc. rather than just counting them (or drawing on the number grid)
might help children see the part of the ten up to the next decade and the rest of the
ten within that decade. The size conceptual supports showing the number of groups
of ten and the number of groups of one present the meaning of the 2-digit place-value
numerals. The decade conceptual supports show the meaning of a 2-digit numeral as
a decade plus some ones (30 + 8 = 38). The place-value conceptual supports look
like the place-value numerals in that the tens and the ones look identical and are dif-
ferentiated only by location. Some place-value conceptual supports use color as well
as location to differentiate tens and ones. Because these introduce an exiraneous
meaningless feature that can be used by children instead of left-right position, color
seems counter-productive. It seems better to use chips all of one color so that the
poker chip computer looks maximally like written 2-digit numbers. However, be-
cause many children are counting on and counting up by the time they reach 2-digit
compulation, the need for objects to calculate sums or differences of teas or of ones
does not seem imperative. Children could use fingers for such calculations (what we
labeled finger ones and finger tens in Table 2). Therefore, a chip computer might
only be used briefly to show the idea of place value (that numbers in positions look
the same but they name different size groups). Even for children who know their
sums and differences to 18, conceptual supports can be helpful in deciding how to
combine, separate, or compare the tens and ones in multidigit nmumbers.

Relationships between solution metheds and concepiual supports

The Dutch empty number line facilitates sequence counting solutions in which chil-
dren begin with one number and move up or down the number-word sequence. The
number-of-groups conceptual supporis can be used for such sequence solutions
{such solutions appear in our Children's Math Worlds classrooms and in CGI class-
rooms where such supports are used), but the number-of-groups supports especially
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facilitate decomposition methods in which groups of tens are combined separately
from groups of ones. However, these grouping methods can be carried out using se-
quence-tens or decade words (e.g. fifty plus thirty is eighty) or separate-tens words
(e.g. five tens plus three tens is eight tens). Many children in each project did use the
methods consistent with their instructional supports.

However, within every project, some children used methods that were not so
strongly facilitated by their instructional supports. This is probably due to several
factors. First, each instructional support can be used for most methods even if one
method is most obvious with that support (this position is not held by all conference
participants; see discussion); therefore children can invent new methods even if they
have not been discussed in a class. The empty number line or 100 grid can be used
to do decomposition methods: A chitd could draw 30, then 20, then 8, then 6 to make
64 on the number line or on a 100 grid. Children can use number-of-groups concep-
tual supports to do methods that begin with one number: They can make the first
quantity and then add on or take away and count as they do so. The methods using
tens (Al0) are especially clear with number-of-groups conceptual supports. The
empty number line actually is no more facilitative of the N10 countfadd onfup or
back methods than the number-of-groups conceptual supports except for a general
unitary up/down sense. With either kind of conceptual support, children must have
some kind of learning experience to see and learn the regular pattern involved in
counting on from 38 by tens (38, 48, 58). The number-of-groups conceptual support
does afford the interpretation of 3 tens § ones plus | more ten is 4 tens 8 ones as well
as a sequence word interpretation.

Second, a focus either on number words or on the written number marks may
lead a child to a particular class of methods. Some children seem to be pulled by the
number words and thus think predominantly (or at least initially) with sequence con-
ceptions and use sequence-tens. Other children seem to be pulled by the number
marks and think in terms of the groups of tens and single ones. Whether these pref-
erences reflect more general dispositions toward oral versus visual thinking is not
clear because so few data exist concerning these individual differences in uses of
methods.

Third, the method used might vary with how well children can count to 100 by
ens and by tens and ones. For children who cannot count to 100, using tens words
and separate-tens conceptions initially is easier because one cannot begin to con-
siruct sequence-tens, or even the whole unitary sequence, until one knows the count-
ng words of that sequence. Furthermore, we know that the counting sequence to 18
must be quite automatized for children to begin to count on/up within it. Therefore,
t seemns sensible that the count by tens list and the count by tens list embedded with-
n the unitary count to 100 must be well autornatized for children to use it in solution
nethods. This may be one reason why weaker Dutch pupils use the separate 1010
nethods instead of the sequence N10 or A10 methods.
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Fourth, the 2-digit concepiual web is very complex, and children have to con-
struct it picce by piece. Early successes on the sequence path or the separate path
may start a child down that path. Brief comments by a peer, sibling, or parent may
be enough to facilitate an initial path. In a classroom where activities are designed
to help children construct both sequence-tens and separate-tens, children still cannot
do both simultaneously and so begin one path first.

Fifth, the sequence of problems given may affect the sotution paths taken by in-
dividual children. The South African Problem Centered Mathematics Project found
that teachers who gave many 2-digit addition problems before giving 2-digit sub-
traction problems had many more children who did incorrect mixed metheds by in-
correctly generalizing from the addition method: Add the decades and add both ones
became subtract the decades and subtract both ones. In Beishuizen (1993) more of
the weaker pupils might have used 1010 because 2-digit problems with no trades (re-
groupings, borrow/carries) were given for a long time before problems with trades
appeared. The 1010 method is particularly easy for problems with no trades, but it
requires thinking about the directionality of the subtraction of the ones to work for
problems with trades.

Sixth, the number words used by children might facilitate one kind of method
more than another. We have already discussed differences between using sequence
words and tens words. Although each kind of word can be used with the opposite
method, they do match the begin-with-one-number and decomposition methods bet-
ter. Most classrooms do not emphasize the tens and ones words as much as we do in
Children's Math Worlds, so many European number words would seem to suggest
decade or sequence solution methods. However, Dutch and German reverse the de-
cade and ones words for all aumber words between 10 and 100, not just for the teen
words as in English. Hearing (internally or externally) a problem as ‘eight and thirty
plus six and twenty’ seems to us to emphasize the separateness of the decade and
ones portion of the number because the split is so obvious: The problem sounds as
if you need to add four separate numbers. In contrast, hearing the same problem as
‘thirty eight plus twenty six’ sounds more like adding just two numbers. Therefore,
Dutch and German words may predispose children to use decomposition methods,
and this may be especially true for weaker children whose sequence-iens concep-
tions may be weaker and therefore less able to overcome the suggestion of the words
themselves. English words (and others like them in which the decade and ones por-
tions elide together to sound more like a single number) may suppost more those
methods that begin with one number. This effect of number words may be one rea-
son that Dutch researchers have used a sequence conceptual support (the empty
number line} and U.S. researchers have used number-of-groups conceptual sapports:
Each is trying to support children to construct that which is less clear in the child’s
number words (participants at the conference had differing views on this suggestion,
see chapter with Discussions). This contrast between methods suggested by the
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words and those suggested by the conceptual support then may be a reason that chil-
dren in both countries invent and use both kinds of methods. It may, of course, be
even more complex than this. The reversals in German and Dutch may make it easier
for children to see or to say the pattern in jumping by tens: ‘Eight and thirty, eight
and forty, eight and fifty, eight and sixty’ seems easier than ‘thirty eight, forty eight,
fifty eight, sixty eight’ both conceptually and procedurally (you can elongate the
‘eight’ while thinking of the next decade word), The different intuitions at the con-
ference about these issues of number words within the researchers from a given
couniry may also indicate that individual differences exist in children in what the
number words do and do not facilitate.

Vertical mathematization, reflection, and children’s conceptual ad-
vancement

The Gravemeijer paper (this volume} summarizes the work in The Netherlands con-
cerning vertical mathematization and reflective cycles in which models of situations
become models for mathematical reasoning about methods and numbers. Our own
work has rested on similar assumptions and was described briefly earlier. Here we
would like to stress six aspects of such cycles at work in the classroom that can great-
ly facilitate children’s movement through developmental levels, These aspects are
especially necessary for the Iess advanced children in a class. Research conducted
by one of us (Fuson) on a longitudinal study of one of the 11.8. reform curricula, the
Everyday Mathematics carriculum from the University of Chicago, has indicated
that these are problematic aspects that need to be emphasized in a curriculum if
teachers are o do them.

First, the models chosen by a curriculum or by teachers using a teaching ap-
proach such as CGI must be used in the classroom in such a way that they enable
children to construct a model of the mathematical domain (in this discussion, 2-digit
addition and subtraction). The Everyday Mathematics curriculum emphasizes the
hundreds grid, and most teachers we visited had such a grid in the classroom. But
the ways in which the grid was used did not enable some to many children in a given
classtoom to use it as a meaningful model of counting, adding, or subtracting tens
and ones. Many children did not see the tens on the hundreds grid, especially when
counting on from non-decade numbers such as 38, Second graders in Cobb (1995)
also could not use the hundreds grid until they had constructed tens-units with some
other model. The way the Dutch textbooks used the hundreds grid (reported in
Beishuizen, 1993) seems particularly problematic. One square was darkened to
show a quantity rather than darkening all of the squares up through that square; this
is a counting rather than a cardinal quantity model.

Second, classroom activities need to be designed that move all children from uni-
tary conceptions o sequence-tens and separate-tens (number of tens) conceptions,
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Although, as Carpenter in his paper (this volume) points out, a class may collectively
have a great deal of tens knowledge, (he task of the teacher is to help every child
have and use such knowledge. The Evervday Mathematics curriculum contains
counting activities to practice counting by ones, tens, and fives (also other numbers)
and (o practice writing large numbers. But it does not contain a sustained sequence
of activities that help children count or combine or separate tens and ones quantities.
Consequently, the more advarced children in a class do invent mental methods, but
the less advanced children have no methods except sometimes the standard algo-
rithm they have learned somewhere (sometimes from teachers just before standard-
ized tests), They use the latter with no connections to tens or ones quantities, and
make many of the typical errors, especially in subtraction (Murphy, 1997). In the re-
vised Dutch empty number line approach, there were explicit activities with the
beadstring and empty number line to support construction of sequence-tens. Most
CGI teachers and the teachers in the earlier Cobb projects {e.g. Cobb, Wood and
Yackel, 1993; Cobb and Bauersfeld, 1995} did use models of tens and ones (often
Unifix cubes stored in columns of ten), but few seem to have used systematic activ-
ities with such models to facilitate all children’s constiuction of the generative tens
conceptual structures. Some children in third grade (Lo, Wheatley and Emith, 1994)
and in the fourth grade (Steinberg, Carpenter, and Fennema, 1994) were still using
unitary methods. To us, this seems unnecessary and unacceptable. Having a period
of exploration with models-of in first grade as ouilined in Carpenter (this volume)
seems fine as long as less advanced children are helped in some way to advance. But
all second graders, even in urban schools, can come to use addition and subtraction
methods using tens by several months into the school year if they have activities to
help them construct the conceptual prerequisites for such methods (Fuson, 1996; Fu-
son, Smith and Lo Cicero, 1996).

A third aspect of using models-of that can support their use and reflection on
such use is using drawn methods rather than physical objects. With drawn methods,
a record of the whole problem-solving process is available after problem solving,
This permits the teacher to examine children’s inethods and look for children’s er-
rors after a class is over. Such monitoring can provide daily feedback loops that per-
it teachers to select students to demonstrate particular methods or choose errors
that would provide useful discussion for many children in the class. If students work
at the board or on individual chalk boards (these are methods used frequently in the
Children’s Math Worlds project}, their solution is available for reflection by their
classmates. No waiting is necessary while children put their method on the board, a
management consideration of importance in many schools, Working at the board
seems to facilitate children helping each other more than working in a smaller scale
on a piece of paper. It is also easier for a teacher to observe such helping. The empty
number line is such a drawn method, and in Dutch classrooms one author has visited,
seems to facilitate reflection and discussion much as our drawn ten-sticks and ones
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do. For the less advanced children, having their method physically present also
seems to facilitate their explanation of their method. They can rely on gesture as well
as on words, and the drawing helps them remember and sequence the steps of their
explanation or learn to do so if they require help from the teacher or a peer.

Fourth, drawn methods can facilitate the linking of the model of the tens and ones
to written numerals. For larger numbers, the goal of using models-of is so that the
written mathematical symbols take on the mathematical meanings of the models-of.
This process is facilitated greatly if the models-of are linked to the written mathe-
matical symbols (Burghardt and Fuson, 1996; Fuson and Briars, 1990; Fuson, Fraiv-
illig and Burghardt, 1992). Such linking can also be done in reverse by reading a nu-
merical record of a method using models-of language. In Fuson (1986) reverse link-
ing by asking children to ‘think about the blocks’ (they had used base-ten blocks to
build their understanding of their subtration method) was sufficient for children to
self-correct subtraction errors in problems with zeroes in the top number.

Fifth, 2-digit numbers within addition and subtraction problems need to be read
as decade words or tens and ones words and not as concatenated single digits (e.g.
38 + 26 said as ‘thirty plus twenty’ or ‘three tens and two tens’ not as “three plus two
and eight plus six’). Many Everyday Mathematics teachers at least sometimes use
concatenated single-digit language (‘three plus two is five® for 38 + 26) themselves,
and more allowed children to do so. We have found that nsing decade words and also
saying the mumber of tens is necessary to keep all children in a class with the discus-
ston. Initially, when many children are working on constructing a generative tens
conceptual structure, some are thinking only with decade words (ordinary English
or Spanish counting words}, and others are thinking only with number-of-tens words
(frequently these include the least advanced children, who do not yvet know the de-
cade words). Using both of these kinds of words can help each of these kinds of chil-
dren understand any discussion, and later it helps children begin to construct the oth-
er related meaning. Coming to use and think with both kinds of words also gives
children flexibility in understanding various kinds of addition or subtraction meth-
ods.

A sixth aspect that ties together all of these issues concerning vertical mathema-
tization and reflection is the role of the teacher in relating a given child’s described
solution method to mere advanced and to more primitive methods so that children
at different levels of mathematization can understand that method. It is not necessary
that a teacher do this for every methed given by a student, but doing it frequently can
help. For example, in the first-grade example from early in the year in Carpenter
(this volume), the teacher was trying to help the child advance by asking her to de-
scribe her blocks method without using the blocks. Such experiences can help chil-
dren to move from an objects method to an oral method. An important ane natuoral
step after such a verbal description without blocks present would have been to do the
description again showing the oral actions with the blocks. This would have made
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the oral description accessible to most students. In the third-grade example in that
paper, the reverse happened. The student said that she did not need blocks to de-
scribe her method, but the teacher insisted that the first description of the method be
with blocks. This allowed the less advanced children to follow that method. Follow-
ing that blocks description with an oral description not finked to the blocks might
then have helped some of the listeners be better able to move away a bit from the
blocks to using words. The third related method then moved to using the words as
the objects, and fingers were used to keep track of the tens counted on and then of
the ones counted on. Juxtaposing these methods in this fashion can help children see
the relations between them and move ahead a level.

In our observations of Everyday Mathematics classes, teachers rarely carried out
such supports for vertical mathematization, and the curriculum did not sepport them
to do so. Most methods were described only orally. The methods that used objects
were rarely acted out or described in detail; a brief ‘T counted’ or ‘T used the hun-
dreds grid’ was accepted by the teacher. Thus, other children did not get to see con-
crete methods carried out, and oral methods were not related to quantities for those
chiidren at a lower level. Consequently, some to many children were not able to fol-
low such descriptions (Murphy, 1997). A few teachers did record on the board in nu-
merals whatever method a child described. This served the fourth aspect above of
linking 2 method to written numerals and also helped memory because the whole
method was there to be reflected upon after the description was completed. If de-
scriptions of solution methods are to serve to do more than emphasize the individu-
ality of methods and give children practice in describing their method (both worth-
while but Himited ends), teachers need to link them to other methods within a vertical
mathematization learning trajectory.

Developmental tevels and 2-digit sclution methods

The Gravemeijer paper (this volume} describes very well the goal of vertical math-
ematization as directing the design of instructional sequences. For 2-digit numbers,
we see two concurrent kinds of vertical mathematization that specify the movement
of individual students from using models-of a meaningful quantity context to using
models-for mathematical reasoning. The first is similar to experiential levels for sin-
gle digits: moving from the use of objects presenting quantities to the use of counting
words presenting quantities {and for some problems to the use of recomposition
change-both-number methods) to the eventual use of addition and subtraction facts
at least for some parts of some problems and the use only of written numbers (and
perhaps fingers) to record some method of 2-digit calculation. The second moves
through the conceptual structures for 2-digit numbers: from a unitary conception to
a decade conception to the sequence-tens or the separate-tens conception and even-
tually to an integrated-tens and ones conception that relates sequence-tens and sep-
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arate-tens. These two involve different kinds of mathematical advancements by chil-
dren. The first uses the models-of to models-for distinction. The second involves
conceptual structures that become mathematicaily more sophisticated and perhaps
should be given a different label; for convenience we will continue to call both of
these kinds of vertical mathematizations.

The Dutch instructional sequence using the bead string and on to the empty num-
ber line does accomplish both of these kinds of vertical mathematization from ob-
jects up through drawn length and number methods using sequence-tens. The three
US projects represented here at the conference all used size conceptual supports that
presented the number of groups of tens and of ones, and they all accomplished at
least parts of both vertical mathematizations. Children’s Math Worlds used in dif-
ferent years two different instructional sequences: one went from grouped objects to
drawn ten-sticks and dots with or without numbers to written numerical methods,
and the other went from use of penny/dime strips to drawn ten-sticks and dots with
or without numbers (and for some classes also to drawn coins) and from there to nu-
merical methods, with mental methods used throughout for some classes. The CGI
sequence reported by Carpenter (this volume) used base-ten blocks or Unifix tens
and moved to number-word solutions without drawings. The Cobb and Yackel
projects used at various timss Unifix cubes stored in columns of ten, hundreds grids,
drawn number balances, drawings of ten candies and single candies, and a computer
program that allowed operating on (decomposing and composing) such drawings,
Children moved at their own pace from using these conceptual supports 1o oral and
number methods without such supports.

The solution methods in Table 1 have an interesting relationship to the develop-
mental sequence of single-digit solution methods described earlier. The methods
that decompose a 2-digit number into its tens and ones and then add or subtract those
tens and ones are initially most like the single-digit Level 1 object methods. The add-
ing and subtracting of tens and ones objects are similar to those used for single-digit
numbers, and the tens and the ones are each counted by single-digit nurbers. The
new and difficult aspects of these 2-digit methods are knowing throughout the solu-
tion which are tens and which are ones and understanding how to deal with any need-
ed trading (needing to make another ten {rom the ones or opening a ten to get more
ones to subiract). The 2-digit methods that begin with one number are quite like the
sequence number-word single-digit methods that count up or down the sequence.
The 2-digit methods that change both numbers are like the single-digit Level 3 de-
rived fact methods.

However, the 2-digit methods each also follow the single-digit developmental
levels within themselves. The decomposition-into-tens-and-ones methods move
from counting objects to counting on, down, or up or using known facts to find the
total or difference of the tens or of the ones. The begin-with-one-number methods
often start with concrete objects before they become sequence counting methods.
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The methods that change both numbers may initially be done with concrete objects
and then as sequence methods. Both for that reason, and because many children are
at higher single-digit levels by the time they are working on 2-digit addition and sub-
traction, we would not expect the 2-digit methods to exhibit strong level effects
among themselves. Rather, as discussed above, they are subject to several different
kinds of instrectional and individual influences.

Another aspect of 2-digit addition and subtraction methods that makes them dif-
ferent from single-digit addition and subiraction methods is that they are more com-
plex multi-step methods that stretch memory very considerably. For this reason, it is
frequently very useful to record results of some steps in the method. Numbers can
be used to record such steps. Therefore numbers take on considerable importance,
and numbers may be used to scaffold a multi-step method. Even when children are
not allowed to record intermediate steps, the numbers facilitate computation, as in-
dicated by the superiotity of mental computation with problems with numbers visi-
ble rather than just presented orally (Reys et al., 1995; Reys, 1984).

Why mental computation?

Mental computation is stressed in some countries and by some researchers. The
Buich curriculum places considerable emphasis on mental computation for 2-digit
numbers, delaying written methods until third grade. Reys et al. (1995) conclude
their paper on mental computation in Japan by asserting:

‘Finally, mental computation (when defined as self-developed strategies based on

conceptual knowledge) should be a central focus of a computation curriculum.

Whereas all agree on the importance of mental computation, surprisingly little is

known about it in most countries. {p. 324).”
We think that it is very important to consider carefully the possible roles of mental com-
putation in children’s learning. If mental computation means moving directly from a
problem presented orally or with written numbers to 2 method done completely internal-
by, it seems clear that such mental computation should follow, and not precede, chil-
dren’s solution of such problems using some kind of guantity referent (objects or a fa-
miliar siteation) for the written numbers in the problem. Such a quantity referent is nec-
essary for children to have and use a meaning for the numbers with which they carry out
a computation (e.g. for 2-digit numbers, for decimals, for fractions}. Much research in
many mathematical domains (e.g. see the reviews in Grouws, 1992) indicates that st-
dents must first construct meanings in these ways. Only afier experience using the exter-
nal referents do students construct robust enough internal conceptions to use these for
mental computation. The recent research on the use of the beadstring and drawn open
number kine clearly recognizes that children need quantity referents initially.

Mental computation of carefully selected and sequenced problems can play an
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irnportant role in helping children construct concepts for that mathematical domain
and perhaps provide an impetus for vertical mathematization of concepts or of meth-
ods. As discussed earlier, in the Children’s Math Worlds curriculum, we now use a
sequence of different kinds of 2-digit problems {e.g. 40 + 10 initially, then 40 + 30,
then 40 + 7, then 47 + 3, and then 40 + 36). These allow children to construct the
major connections in Figure 2. The problems are given initially with external quan-
tities (penny strips and pennies), and children are encouraged from the beginning to
solve them mentally if they can. During the rest of the year, such mental computation
questions are asked, and gradually more children become capable of solving them.
But the major function of such work is to facilitate children’s construction of the
whole generative tens conceptual structure. We do eventually ask children to solve
mentally the more difficult problems such as 38 + 26, but it is expected that enly a
few children will be able to do so initially. Most children need to use drawn objects
and numbers to solve such problems initially.

We think that it is important that our present sequence of problems does not con-
tain problems with no trades such as 32 + 36 or 46 - 25. In subtraction, such problems
without trades can suggest the incorrect subtraction method in which the smaller top
ones are subtracted from the larger bottom ones. Giving problems requiring trades
immediately contributes to children’s construction of tens-ones shifts within se-
quence-tens and/or separate-tens conceptions because children have to confront the
issue of making another ten or opening a ten. These issues are easy to solve with
drawn quantities.

It seems to us that an unanalyzed stress on mental computation is partially a re-
suft of traditional curricula in which children learned written number calculation
with little understanding. Mental calculation in such cases meant either a child see-
ing that written method in his/her head or using a method the child had invented. In
the latter case, such invented methods had a better chance of being conceptual than
the tanght algorithm. Therefore, mental computation was one way to encourage such
inventions. For example, Reys et al. {1995} found that many Japanese children re-
poried that they had invented the mental computation methods they used that were
not just seeing written calculations. However, in classrooms in which all methods
are based on understanding and no method is compulsory, mental computation no
longer confers the advantage of more understanding. We certainly advocate ‘self-de-
veloped strategies based on conceptual knowledge’ but strategies do not have to be
mental to meet this criterion.

Use of mental estimation is also related to mental calculation. Estimation is re-
lated to the elusive to characterize but desirable ‘number sense’. Both estimation and
number sense are desirable, but they involve different processes than exact mental
computation. They both require a strategic analysis of the numbers in the problem,
the result of which then directs the consequent process. These both are useful in real
life and in checking (and sometimes directing) problem solving. They each require
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new ways to use a generalive tens conceptual structure, and so help children extend
their understanding. But these are both quite different from exact mental computa-
tion,

The roles mental calculation should play in the curricolum depend considerably
upon what mental computation is considered to be. It might be considered to be the
solution of problems presented orally without the use of any external action or ob-
ject. This is a stringent definition that eliminates the use of the known numbers even
as memory supports. The consistent and in many cases very large reductions in cor-
rect answers between problems presented orally and those presented in numbers for
Japanese students (Reys et al., 1995) and for U.S. students {Reys, 1984) indicates
how much the written numbers facilitate thinking about a solution.

Mental calculation might be the kind of calculation expected for written numeral
problems. One bilingual staff member on the Children’s Math Worlds project was
taught in Argentina calculation methods for addition, subtraction, multiplication,
and division in which every intermediate step was done mentally and only the an-
swer was written (the answer could be written digit by digit as these were produced).
However, as in the United States with traditional written algorithins, some children
secretly used fingers to calculate.

When no intermediate step can be written, methods that carry along the answer-
in-progress have an advantage because the steps already done are less likely to be
forgotten. The methods that begin with one number do this. The methods (IN10) that
add/subtract the tens then the ones (or vice versa} are also particalarly easy because
each of those numbers is sitting there in the given problem number as a memory sup-
port. The other two kinds of begin-with-one-number methods require more remems-
bering because the amount overshot (in N10C) must be remembered or the part of
the ones not added or subtracted initially must be remembered (in A10). However,
if intermediate steps can be written, these methods lose their advantage. Especially
for less advanced children, an early stress on mental calculation seems like an un-
necessary and perhaps even unfair choice. The focus in the Netherlands on ‘mental
calculation’ in the second grade is actually more of an emphasis on using ‘handy’
numbers or methods that take advantage of the specific numbers in a given problem.
The calculation does not have to be mental but may use objects or drawn supports
such as the empty number line.

Conclusion

There now exist several examples of instructional sequences that support iearning
trajectories of children through vertical mathematization of 2-digit addition and sub-
traction methods while also affording a range of different sclution methods carried
out by different children. As more and more such classrooms exist, and as teachers
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attempt to use new curricular materials in these areas, we should be able to learn
more about maximal learning trajectories and about how to support afl children suc-
cessfully to methods using tens. We also may learn more about the following impor-
tant issues: How can discussions be used most profitably for the benefit of all chil-
dren in the class? How much understanding of each method should all children
have? Can understanding follow as well as precede learning a method? What are the
relationships between autonomy and being helped to learn a method?
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