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ARTICLE INFO ABSTRACT

This article provides an overview of some perspectives about spe-
cial issues in classroom mathematical teaching and learning that
have stemmed from the huge explosion of research in children’s
mathematical thinking stimulated by Piaget. It concentrates on
issues that are particularly important for less-advanced learners
and for those who might be having special difficulties in learn-
ing mathematics. A major goal of the article is to develop a
framework for understanding what effective mathematics teach-
ing and learning is, because doing so is so important for struggling
students and for research about them. Piaget’s research had a funda-
mental influence on the on-going tension between understanding
and fluency in the classroom, supporting efforts toward increas-
ing understanding. But in some countries, misinterpretations of
Piaget led to practices that are counterproductive for children,
especially struggling learners. Such misinterpretations are identi-
fied and a more balanced approach that also draws on Vygotsky
is described—a learning-path developmentally-appropriate learn-
ing/teaching approach.
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A major goal of this article is to develop a framework for understanding what effective mathemat-
ics teaching and learning is. Doing so is extremely important for students having difficulty learning
mathematics. The framework develops out of a major historical tension in mathematics education
between understanding and fluency. In the USA this tension has been so intense that it has been
termed “the math wars.” It, and variations in the relative emphases on understanding and fluency,
has also influenced mathematics education in European countries, although these histories vary in
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the timing and intensity of the tension. Piaget’s research had a fundamental influence on this ten-
sion, supporting efforts toward increasing understanding. But in some countries (perhaps especially
in the USA), misinterpretations of Piaget led to practices that are counterproductive for children and
especially for struggling learners.

This article focuses on early numerical learning (up through multi-digit addition and subtraction)
because that is the focus of most of the research on students with learning difficulties and because it is
especially important for such students to gain competence in these early topics. The article necessarily
simplifies complex issues as it summarizes some broad themes and a few more particular points. It
is not a review of the literature, although some major researchers are mentioned along the way. For
more detail and fuller references, see research reviews by Clements and Sarama (2007), Fuson (1992a,
1992b), Verschaffel, Greer, and DeCorte (2007), and the research summarized in the NRC Adding It Up
report, 2001, and the NRC early childhood math report, 2009.

1. The powerful influence of Piaget on research about children’s mathematical learning

Many researchers of my generation probably remember the first time they read a book by Piaget
on children’s mathematical knowledge. In 1965 as a math major at Oberlin College, I was interested in
children’s math learning. A math professor sent me to look at Piaget’s books, and I sat stunned, reading
more and more vignettes that revealed how children thought about mathematical ideas. They did not
think like adults! And there were learning progressions in their thinking—their ideas developed to
become adult ideas. And you could invent wonderful tasks (or at least Piaget could) that would reveal
how children did think differently and then progressed in their learning. It is difficult to explain to
current researchers how revolutionary these ideas were at the time or the pervasive extent of the
explosion of creative research they spawned, all aimed at understanding children’s mathematical
cognition in more detail.

Because of this explosion of research, we know hugely more about children’s mathematical think-
ing than before Piaget’s work became widely known. Many of the research studies from mathematics
education, developmental psychology, and cognitive development summarized in the two latest Hand-
books of Research on Mathematics Education (Grouws, 1992; Lester, 2007) are influenced in some way
by Piaget’s ideas that children construct their own concepts and that these ideas develop along learning
paths.

Later researchers adapted and extended Piaget’s theory. Neo-Piagetians like Case cast Piagetian
stages into a neater organization through studies that added successive steps in problem situations
(Case, 1991; Case & Okamoto, 1996). He and his students also did important educational research in
several mathematical domains (e.g., Griffin, 2005; Kalchman & Koedinger, 2005; Moss, 2005). These
studies often used bridging contexts that were carefully chosen to be clear examples of the class of
situations for the mathematical domain that could support student understanding. Vergnaud (2009)
developed the framework of conceptual fields that extended Piaget’s notion of scheme to include goals,
rules to generate activity, concepts- and theorems-in-action, and generative possibilities of inference.
Concepts involve a set of situations and a set of linguistic and symbolic representations as well as the
operational invariants contained in schemes. These extensions in the conceptual field framework allow
the specific characters of various mathematical domains to enter the analysis, as is necessary, and shift
the focus from the general logical operations studied by Piaget to specific mathematical operations.

Piaget’s theories and the subsequent research about children’s understandings were especially
important to educators and researchers who were concerned about the lack of mathematical under-
standing resulting from traditional rote-teaching methods. Far too often the teacher stood at the front
and did a problem or two with no or minimal explanation and then the students were to imitate (or
there even was no initial demonstration at all). These rote-teaching methods failed to reach many
children, especially those less-advanced than their peers and thus all children with mathematical
learning difficulties. Such traditional approaches emphasized fluency and not understanding, and the
opponents of such approaches might cleverly have termed them teaching without learning.

In this context, the idea that children could and did think, and had their own mathematical ideas
and approaches, was very refreshing and encouraging. But Piaget’s focus on the concrete operational
period in children’s thinking and on the centrality of children’s interactions with objects during this
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Table 1
Overinterpretations of Piaget that underpin “the math wars”.

Mathematical learning without teaching: an overemphasis on activities with manipulatives
For successful learning by children up to age 8 or 9 (and for some who are older), children

A. Must manipulate real objects
B. Must manipulate real objects not connected to mathematical words or symbols or cultural methods
C. Must manipulate real objects not connected to mathematical words or symbols or cultural methods for a really
long time and then perhaps only connect briefly to symbols
D. Must not be taught any methods at all
E. Are in a classroom in which celebration of every student’s thinking as an equal contribution or simple turn-taking
to explain every approach replaces a prolonged focus on mathematically important ideas in children’s problem
solving and discussion about such solving.
This emphasis is on understanding at the expense of fluency, and its adherents assert that this approach is the only
developmentally appropriate approach.
Problems as these overinterpretations are enacted in the classroom are:
A. The real objects sometimes do not show the math ideas clearly enough, they may be difficult to organize, children
can be distracted by them and use them improperly (e.g., throwing them).
It can take a long time to understand how to do each activity before the math elements emerge and are able to be
focused on. Activities may have too much “activity” and not enough “mathematics” (e.g., covering whole irregular
surface with squares and then counting them to learn place value: children can not see the tens and ones, and this
takes a long time).
B. When objects and symbols are not connected, the formal mathematics does not take on meanings. Also, too often
the real objects are used only to produce answers rather than to help children build meanings for actions on the
objects that connect to the mathematical symbols.
C. There is a very delayed or no real learning path to more-advanced methods and insufficient time to build
meanings for symbols.
D. It is assumed that any teaching with symbols results in rote learning rather than in understanding, but
meaningful teaching approaches are not tried or even assumed to be possible in some extreme cases. For some
programs or in some research writing, it is forbidden (or called immoral) for teachers to explain with visual
referents research-based methods that children understand and that are in their learning path (e.g., counting on).
E. Math Talk may be about turn taking (without deep listening) rather than an instructional conversation focused on
mathematical ideas. All of the ways rather than mathematically important and accessible ways are often emphasized.

Teaching Without Learning: The other side of the “math war”

These overinterpretations of Piaget arose and still arise partly in resistance to “traditional” rote teaching of math in
which the teacher stands in front and shows what to do (and does not explain why or link the symbols to any visual
referents or other meaning-make sources); then the children try to imitate the teacher and do endless worksheets
of symbolic work with no visual referents or other meaning-making supports or even any expectation of
meaning-making (understanding). Or worse yet, the teachers just has students open the textbook to page x and
start doing the problems with no demonstration at all.

This emphasis is on fluency with no emphasis on understanding.

period led to (or reinforced) an educational theory emphasizing an activity approach in which children
spent most of their classroom time interacting with objects. At least in England, Australia, and the
USA, this theory was widely adopted for early childhood but also was used in some places up into
the primary and even middle grades, although there traditional teaching also remained pervasive.
This swing of the educational pendulum emphasized understanding at the expense of fluency and
might have been termed by its opponents mathematical learning without teaching. Various attributes
of this view are listed at the top of Table 1, and problems with each attribute are listed in the middle
of the table. To emphasize that the extremes of this approach (the misinterpretations of Piaget) do
reflect an understandable but out-of-balance concern with the dangers of traditional teaching, such
traditional teaching that downplays orignores understanding is summarized at the bottom of the table.
The misinterpretations of Piaget summarized in the table are particularly problematic for children
with difficulties in learning mathematics because these children especially need meaning-making
supports for learning and help moving on to more advanced and mathematically effective strategies.
It is important for such children that classrooms move beyond these misinterpretations.

2. Enter Vygotsky, culturally specific knowledge, and symbolic tools for learning

The explosion of research on early mathematical thinking stimulated by Piaget can be thought of
as falling into four levels that follow children from birth to age 8:
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A1l: mathematical thinking without language (to about age one),

A2: understanding and use of number words and socio-cultural tools like counting,
A3: adding, subtracting, and comparing single-digit numbers,

A4: adding, subtracting, and comparing multidigit numbers.

The first area is consistent with Piaget’s focus on biological, relatively culturally invariant modes of
thinking, but the others involve culturally specific knowledge and oral and written symbolic tools for
learning and thinking that were the focus of Vygotsky’s work (1934/1986, 1978). The research in these
areas provides our detailed knowledge about progressions in children’s learning that can be supported
in homes and in classrooms. Major aspects of these progressions are similar around the world, but
important parts of them depend on specifics of the language, the cultural view of mathematics learning,
and the learning supports widely available in a particular culture or in its classrooms.

The implication for research on mathematics learning difficulties is that some such difficulties result
from cognitive processing difficulties but that others may result from, and most may be exacerbated
by, specific cultural issues. It is important for researchers and educators to understand the level of
cultural supports in their language, homes, and schools in order to interpret the nature of the various
difficulties and powerful ways to overcome them. Examples of helpful supports are provided later for
several core mathematical topics.

An example of culturally specific knowledge that is pervasive in early math learning is the extent
to which the number words in the language clearly show the structure of numbers up to 100 as groups
of tens and of ones (e.g., 52 is 5 tens 2 ones). The Chinese-based named-value system used in many
East Asian languages is quite clear, regular, and in the same order as the written numerals: 5678 is
said (translated into English) as five thousand six hundred seven ten eight. Each larger value is named
in a regular fashion. In European languages there may be reversals in words for different values (in
English, fourteen for 14 where the four is said first but written second), no clear words that say the place
value, especially for the tens (in English, teen and ty but not ten), and even more complex constructions
such as the French number words based on twenty. There is considerable variation across European
languages, but these irregularities do result in many European children learning their number word
sequences more slowly than do East Asian children (Miller, Smith, Zhu, & Zhang, 1995). Children
speaking such languages also as a group use quantities of ten in their computations less easily and
much later, if at all. This delay is also related to the lack of learning supports in many classrooms that
can help children build and use concepts of ten (Fuson, 1990; Fuson & Kwon, 1991). These research
results are for “normal” children, so children with language or sequential processing difficulties may
have even more problems. Other mathematical terms may also be confusing or at least not as clear
in a given language, such as fractions said using ordinal words (in English 3/5 is said as three-fifths)
rather than the Chinese of five equal parts (take) three. Therefore mathematical vocabulary may be an
extra complicating factor in learning rather than a potential learning support for the meaning of that
vocabulary (Han & Ginsburg, 2001).

Children need additional learning supports to construct the mathematical ideas obfuscated by their
language. For example, we used visual referents for the tens and ones (penny-dime strips with ten
pennies on one side and a dime on the other in the early classrooms discussed by Hiebert et al. (1997)
and math drawings of tens and ones exemplified later by Fuson, Smith, and Lo Cicero (1997)). However,
for children who entered first grade not counting or only counting to ten, it still was a major task to
learn to count to 100 and relate these words to the groups of tens and ones in the visual supports. We
found that using a modified English form of the Chinese number words (25 was said as two tens five
ones) allowed all children to enter the conversation about place-value meanings and 2-digit addition
with regrouping before some of them had fully mastered the English number word sequence to 100.
This place-value language could later be used to describe their addition and subtraction methods
involving regrouping. Of course, we also use the standard English number words because children
have to learn their own cultural words. But the meaningful place-value words allowed all children to
build and use multi-unit place-value concepts in adding and subtracting while solidifying their fluency
with the irregular English number words. These linguistic issues need to be considered in research
about mathematical learning difficulties.
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Table 2
Piaget and Vygotsky: learning-path developmentally-appropriate learning-teaching.

Extreme views of learning

Balanced learning-teaching

Extreme views of teaching

Piaget “constructivist”
knowledge

Meaning-making only via real
objects

(only) Child-invented methods

Integration of Piagetian and Vygotskiian
forms of knowing

Meaning-making by connecting visual
referents of ideas to cultural symbol
systems and using meaningful language
and clear mathematical situations (e.g.,
bridging contexts). Math drawings are
particularly useful visual referents that
children can make themselves.

Sharing child-invented, mathematically
desirable and accessible methods, and

Vygotsky’s formal cultural
knowledge

Meaning-making only via
disconnected cultural symbol
systems (e.g., learn the “dance
of the digits” by observation
and imitation)

(only) Culturally valued and
efficient method

culturally valued methods linked to math
drawings or other manageable visual
referents

Teacher (and the math program) structure
a learning path for all children that is based
on children’s learning progressions
Understanding and fluency

Classroom is teacher-dictated;
is over-structured for some

Classroom is child-dictated; is
under-structured for some

Understanding Fluency

3. Piaget and Vygotsky, learning and teaching, and learning path developmentally
appropriate teaching

An outline of an educational framework reducing misinterpretations of Piaget and of Vygotsky
appears in Table 2. It shows how integrating components of Piaget and Vygotsky can lead to a more
balanced perspective that in turn can lead to more effective learning situations that can benefit all
children, but especially those with mathematical learning difficulties.

The first important issue is summarized in the top row of the table. Over-emphases either on
learning or on teaching lead to the problems noted earlier in the discussions of tensions between
understanding and fluency. A balance of focus on both understanding and fluency is needed, with
an understanding of the continual interaction of learning activity and teaching activity. Each teaching
activity of a teacher results in some learning activity by each child using her own schemes and schemas
(Piaget’s terms for mental knowledge structures). This occurs even in traditional teaching where there
is little emphasis on meaning-making by the teacher or the math program. Children always construct
their own knowledge and seek patterns. But many more children can construct meaningful connected
webs of useful and fluent knowledge if their teacher and math program use the results of the explo-
sion of research about children’s mathematical thinking to weave together the best of Piaget’s and
Vygotsky’s theoretical perspectives. These integrated perspectives are outlined in the middle column
of Table 2.

The second row in Table 2 stems from Vygotsky’s distinction between two forms of knowledge
and of thinking, informal/unscientific and formal/scientific/academic (1934/1986). Children learn the
first outside of school and in natural environments (the focus of Piaget’s interest), and they learn the
latter in school. To become meaningful, Vygotsky asserted, children must connect these two forms
of knowledge, but to date there are few specifics about how to do this. The tension between under-
standing and fluency can be thought of as an overemphasis on informal/unscientific knowledge not
linked to formal/scientific/academic knowledge (learning without teaching) or as an overemphasis on
the reverse—on formal/scientific/academic knowledge not linked to informal/unscientific knowledge
(teaching without learning).

The third row of the table uses the research of many math educators who have developed visual
referents for math concepts (a major theme of such research) and the extensions of Case and Vergnaud
mentioned earlier. Mathematical ideas are abstract, so children do need to experience visual referents
for the situations or concepts as a way to relate their developing schemes and schemas to cultural
symbol systems. But one of the major results of the ten years of classroom research developing my own
K-5 math program is that children, evenin first grade, can make math drawings for many mathematical
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concepts. Math drawings are simplified drawings that capture the important mathematical aspects. For
example, children can draw 4 circles and then 3 circles, rather than animals or pictures of animals, for
the cultural symbols 4 + 3 and then count them to find that 4 + 3 =7. Place-value drawings of hundreds,
tens, and ones can be linked step-by-step to methods of multi-digit addition and subtraction to make
the steps meaningful and accurate. Drawings of rectangles that show tens and ones along the edges
and hundreds, tens, and ones inside can do the same for multi-digit multiplication and division. These
math drawings facilitate explanations and discussions of various methods (Math Talk about) as well
as supporting the mathematical thinking of individuals. Math drawings have many advantages over
manipulated objects in school classrooms (Fuson, Atler, Roedel, & Zaccariello, 2009).

The fourth row of the table summarizes the fact that traditional and Piagetian teaching differ not
only by their relative emphasis on meaning-making (a little and a lot), but also on the source of
mathematical solution methods. In traditional teaching, a culturally valued and efficient method is
taught (usually separated from attempts to make it meaningful), but such traditional methods often
ignore how easy it is for children to make sense of them or to carry out their steps without errors. In
Piagetian approaches, the focus is on methods invented by children. When the only methods in the
classroom are those invented by children, a long time may be spent on relatively primitive methods
invented by children. These invented and traditional methods are often so far apart that it is difficult
to bridge them.

There are methods in the middle that are both mathematically desirable (generalizable and efficient
enough) and accessible to children at various places along their learning path. Methods for research
Levels A3 and A4 (single-digit and multi-digit addition and subtraction) that are particularly useful for
children with learning difficulties are examined in the next section. If a classroom provides a meaning-
making environment in which math concepts and operations are supported by meaningful situations
and visual supports like math drawings, some children can invent methods. These can be elicited from
children and then rather quickly one or more mathematically desirable and accessible methods can
be shared with children. These all can be compared and contrasted, and any culturally valued efficient
methods can also be introduced for discussion if they are not introduced into the classroom by children
using them.

The overemphases of the left and the right columns of Table 2 are corrected by this approach
because children who invent primitive methods are helped to move beyond them to a mathematically
valuable method, and children who have learned a culturally valued efficient method by rote can be
helped to understand it. In this way the whole learning path of methods that children do, can, and
“are supposed” to learn enter the classroom conversation but in a meaningful way supported by
the math drawings and by Math Talk. Children can choose which mathematically desirable method
appeals most to them, and they work to become fluent in it as well as to understand and be able to
explain it linked to a math drawing. Thus, such a classroom supports both understanding and fluency.
These mathematically desirable and accessible methods and their learning supports are especially
appropriate for intervention research with children having difficulties in math. Research on diagnosing
and identifying such children can also benefit from understanding that children’s difficulties might
have been exacerbated by extreme views in the left or right column of Table 2.

The final two rows in Table 2 restate the extreme views in other language. Child-dictated class-
rooms emphasize understanding, teacher-dictated classrooms emphasize fluency, and a learning path
program based on children’s learning progressions supports both understanding and fluency.

4. Mathematically desirable and accessible methods for all children but especially helpful
for many children with mathematical learning difficulties

4.1. Single-digit addition and subtraction

One of the most robust results within the explosion of research stimulated by Piaget is the identifi-
cation and detailed working out of a world-wide learning path of methods within single-digit addition
and subtraction (Level A3), as detailed in research by Baroody, Carpenter, Cobb, Fuson, Siegler, and
Steffe summarized in the overview references cited earlier. This path is summarized in Table 3.
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Children everywhere begin with a first level at which each of the three quantities in the addition
or subtraction must be represented sequentially (count all or take away). If children count out the
two addends themselves, they must use relationships between counting and cardinality shift from
the cardinal to the count meaning to count out the known groups, and then make the shift from a
counting to a cardinal meaning after counting the total. For subtraction these same shifts are involved,
but the child first counts out the total and then counts the known addend to take it away, and then
counts the remaining objects to find the unknown addend (how many are left).

At Level 2 the counting words move from being a list matched with outside objects as a child
counts them to being an internal representational tool where the number words themselves are the
objects that are counted or matched. These number words represent the numbers in the addition or
subtraction as children count on to find the total (when adding) or to find the unknown addend (when
subtracting). When the number counting on is more than two or three, some method of keeping track
of how many are counted on must be used (raising fingers as each word is said, double counting
verbally, or using a visual image as one counts).

Some to almost all children then move on to use Level 3 recomposing methods, make-a-ten or
doubles. The make-a-ten methods are taught to all first graders in East Asian countries and are learned
successfully by most of them (Fuson & Kwon, 1992; Murata, 2004). But these methods are easier for
children speaking East Asian languages than those speaking European languages because there is an
extra step at the end for the latter children. When recomposing 8 +6 to make 10 +4, the step from
thinking ten and four to thinking 14 is much easier in East Asian languages because 14 is said as ten
four rather than as fourteen (or some other European less-explicit word). There also is more cultural
pull for this method because the ten in each teen number is clearer in East Asia because of the ten in
the language and because groups of five and ten are more visible in the culture.

For many years I designed various methods to help children in the USA learn this method and its
three prerequisites:

(a) knowing for each number its partner to ten (the number that with it makes ten);
(b) knowing the partners for each single-digit number, and
(c) knowing immediately 10 +n.

I also designed meaningful methods for moving children to Level 2 counting on. The latter is
very successful for almost all first graders, while some children never learn the make-a-ten meth-
ods because they have too many steps. Quite a few children when supported to learn them do so
when making math drawings for multi-digit addition and subtraction, a context in which they are
particularly useful and where the math drawings support these methods (see the discussion of Fig. 1).
Therefore in the USA and probably in many countries speaking European languages, counting on for
addition and subtraction is the mathematically desirable and accessible method that can be taught to
(almost) everyone.

4.2. Subtraction as finding as unknown addend and thus using forward (not backward) methods

In the USA and some European countries, children’s invented methods for subtraction tend to be
counting down. Counting down methods are considerably less accurate than are counting on methods
because counting down is difficult, and the count-cardinal relationships are complicated and result
in four different counting down methods, only two of which are correct (Fuson, 1984; Fuson & Willis,
1988). For example, to solve 14 — 8, you can start with 14 or with 13 and you can end on the eighth
word said or the ninth word said. The two correct methods are

(a) 14,13,12,11, 10, 9, 8, 7; that’s eight numbers, so the next number tells how many are left, it is 6,
(b) 13 is one taken away, then 12, 11, 10, 9, 8, 7, 6 is 8 numbers taken away; so 6.

But children imitate their counting on methods, and also do the two incorrect methods, ending with
one too many or one too few. Many countries around the world emphasize the relationships between
addition and subtraction and teach forward methods like counting on for subtraction: 14 — 8 =? means
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Fig. 1. Linked drawing and numerical steps for addition methods.

8+7?7=14? My research over many years has demonstrated how effective such an approach is (Fuson,
1992a, 1992b). Failure to help children move from backward to forward methods for subtraction
makes subtraction seem more difficult than it has to be for children. Kamii (1989, 1994), for example,
suggests that subtraction is more difficult than multiplication and that it should follow multiplication,
but her teaching-learning methods do not include helping children sufficiently to solve subtraction
using forward methods.

For both Level 2 and Level 3 methods, the forward methods of subtraction are procedurally easier
than are the related addition methods. For counting on, the child must just monitor the word said
and stop when s/he hears the total (e.g., 14); then s/he can look at the fingers and see how many
were counted on. For addition, the fingers keeping track must be monitored with each count, and the
finger patterns for each number (e.g., 6 fingers) must be very well known in order to be recognized
in action. For the subtraction make-a-ten method (see Table 3), children are just adding the amount
to make ten (e.g., 2 for 8 +?=14) and the number seen in the ones place (e.g., the 4 in 14) to find the
unknown addend. So subtraction is actually adding. For addition they must also know the break-apart
partners for each number added on (e.g., after finding 2 to make 10 with 8, they have to know that
2+7? makes 6, ? is 4) and know the teen sums. Hsiu-fei Lee, a graduate student of mine, tested over
100 low-achieving Taiwanese first graders and found that they all learned make-a-ten for subtraction
but some still counted on for addition because the addition make-a-ten method was too difficult for
them (Duncan et al., 2000).

Because many children diagnosed with learning difficulties in mathematics have problems with
single-digit addition and subtraction, it is especially important that they have support to learn the
mathematically desirable and accessible Level 2 counting on methods. These are generalizable to all
single-digit numbers and can become fast and accurate enough to use in any problem solving or multi-
digit calculation. An important focus for helping all children learn to count on for both addition and
subtraction is how different learning difficulties affect counting on. Some children might not be able
to use fingers to keep track but could use visual images, while others might be able to do the reverse.

The focus of information-processing models that emphasize memorizing and recall of addition and
subtraction “facts”, and state or national goals that use this language and emphasize memorization,
ignore this huge research literature on children’s learning path for single-digit addition and subtraction
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methods. Of course all along the course of learning children do learn to solve particular additions or
subtractions very rapidly; they seem memorized and may be memorized. This is normal and helpful,
especially for smaller numbers. But mathematics is special because general solution methods do exist
in many domains, and this A3 domain is one. The mathematically desirable and accessible counting-on
methods are examples of these.

Single-digit multiplications and divisions are a more complex issue. Students do need to learn
patterns in how various multiples do or do not fit with the base-ten system (e.g., fives fit and so are
easy, and 7s do not and thus are difficult). But there are no general methods that work across all
single-digit numbers, so students do need to spend time working on remembering and differentiating
various multiplications and divisions.

4.3. Multi-digit addition and subtraction

Many methods invented by children for solving 2-digit and even 3-digit addition and subtraction
are extensions of the Level 2 counting-on or counting-down methods for single-digit numbers (e.g.,
the Open Number Line and other approaches summarized in Beishuizen, Gravemeijer, & van Lieshout,
1997; Cobb, 1987; Kamii, 1994). However, provision in the classroom of objects showing tens and
ones do support methods that combine like places (Fuson et al., 1997a, 1997b; Hiebert et al., 1997;
McClain, Cobb, & Bowers, 1998). We found that the counting skills required by the methods starting
with one whole number (counting on or counting back by hundreds, tens, and ones) were difficult
for many children and became cumbersome with 3-digit numbers and worse than cumbersome for
larger numbers (i.e., they do not generalize readily). We instead found methods that were easy for
all children to relate to math drawings of quantities and to explain using quantity language. These
methods also related readily to the traditional methods, so these also could be explained and related
to math drawings.

Math drawings of hundreds, tens, and ones that can show various multi-digit methods are shown
in Fig. 1 along with the current common traditional method (for the USA and some European and East
Asian countries) and two mathematically desirable and accessible methods I have used in hundreds
of classrooms with positive results from students and teachers (they truly are accessible methods). Of
course the quantitative meanings of any math drawings must be developed with students. These are
developed by originally drawing on 10cm x 10 cm grid dots. The ten-sticks are then abbreviated to
quick-tens (plain little sticks) that do not show the ones, and the hundreds-boxes are abbreviated from
the boxes drawn around ten ten-sticks (and 100 dots) to be just empty boxes that convey the meaning
of one hundred things. A vital aspect is that each step in a drawing is linked with each step in the
written method. Initially problems are presented in situations or horizontally, but children come to
see how it simplifies problem solving to align like places above each other, both in the math drawings
and in the numeric method.

In the widespread traditional method we call the New Groups Above method (see the left column
of Fig. 1), any new ten or hundred is written above the problem in its column ready to be added with
those multi-units (the new ten with the tens, etc.). But what some students say about this method
is that it changes the problem. And it does change the original addition of two numbers. A simple
modification of that method is shown in the second column with drawings. This New Groups Below
method is conceptually clearer because each number is in its own horizontal space so you can see each
of the three quantities (the two addends and the total) without the conceptual confusion of the little
1s at the top. This method also has several other advantages identified by children and by teachers.
First, you can see the totals in a column, the 16 ones (see the first row) and the 14 tens (see the second
row), more clearly when the 1 is written below close to the 6 and the 4. Second, children can write
the teen total (e.g., 16 or 14) in the order in which they usually write it (1 then 6) rather than “write
the 6 and carry the one”. When children “carry the 6” it is sometimes because of this writing order
and not because of a conceptual error. Third, it is easier to add the three numbers because you add
the two numbers you see (e.g., 8 and 5) and then increase that total by 1. With New Groups Above,
children tend to forget to add the 1 if they add the two big numbers they see. So teachers tend to urge
students to add from the top down. This requires them to add the 1 to the 8, then ignore the 8 they see
and remember a 9 they do not see, and add the 9 to the 5. So the New Groups Below method avoids



K.C. Fuson / Cognitive Development 24 (2009) 343-361 353

some complexities of the current traditional method. Teachers have reported that it is much easier for
students with mathematical learning difficulties, who may have difficulties with the spatial issues of
writing numbers, the spatial or conceptual organization of the three quantities, or the actual adding
of single-digit numbers. The math drawings linked to the symbolic method can help with any of these
issues.

Children’s invented methods tend to move from left to right, as does reading in European languages.
The Write All Totals methods (shown in the right column of Fig. 1) is helpful to many children with
this preference. It also clearly shows the addition of the quantities in each place by writing out the
numbers fully. This is conceptually clearer for many children. This method can also be done from the
right.

The drawings use the 5-groups that are used widely in East Asian textbooks. They support children’s
seeing and using the single-digit make-a-ten methods, so many children do move on to these mental
methods after repetitive experiencing with such drawings. As a child would explain for the top left
drawing, I can see that the nine needs one more to make-a-ten, so the seven gives it one more. That leaves
six in the seven, so ten and six is sixteen (writing 16). Even with the 5-groups, children are very creative
with their drawings. The second child liked to make-a-ten from the two fives because it looks like
a ten-stick. This also is a mental method that works for all problems when both addends are five or
more.

Most children stop using the math drawings when they are not needed and the steps with the writ-
ten numerals have taken on quantitative significance. But for some children, continuing the drawings
for a long time is better than not being able to solve problems at all.

These examples show how we can teach children methods that are accessible to them but are
also mathematically desirable—generalizable, rapid enough, and showing important mathematical
ideas. So modifying the cultural method and supporting meaning making in ways that are simpler
than always (and just) using real objects or just using written symbols can help many children with
mathematical learning difficulties. Research then can focus on what other supports are necessary
beyond these to help overcome specific learning issues particular children might have.

Thus, one important focus of future research on mathematical learning difficulties is to determine
the extent to which particular difficulties children have at Levels A2, A3, and A4 really are special learn-
ing difficulties of the identified children rather than ones stemming from inadequacies in the learning
opportunities that the children experienced. Did their classrooms not provide sufficient learning sup-
ports or support movement to a mathematically desirable method? Or did it demand unnecessary
performance such as memorized addition-subtraction facts rather than a general counting-on method
or require a difficult algorithm rather than a mathematically desirable but accessible one? Geary’s
(1994) recommendations for learning interventions with children having different types of learning
difficulties are consistent with the balanced learning-teaching view in Table 2. Therefore experienc-
ing such approaches in original learning might reduce the number of children experiencing learning
difficulties, though they might need more time to master particular topics.

5. Insufficient meaning-making among researchers: some issues in the research Levels A1,
A2, A3, and A4

5.1. Level Al: the earliest capacities

Research area A1 with human infants has explored issues of what biological precursors for math-
ematical knowledge are wired into human infants, primates, birds, and other species capable of
participating in research tasks without verbal knowledge. These studies largely center around dif-
ferentiating very small numbers (1, 2, and 3) and estimates or comparisons of magnitudes larger than
these (adult primates seem to have more capacity here than human infants). Methodological difficul-
ties plague the design and interpretation of these studies (e.g., are infants processing number or area
or what?). Models of numerical processing are an important focus of this research, but these often
seem mere restatements in information-processing or other language of steps that might account
for the behavior. And the claims that these early competencies form the bases of later mathematical
performance seem under-supported, even analytically.
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5.2. Meanings of more

The evidence does seem clear that humans (and primates and some birds) are wired to attend
to quantitative attributes in the environment. These probably are numerical for very small numbers
of whole things and probably are numerical or area or density or some combination of these for
judgments of which of two larger groups of things has more. In real life there are fewer things that
are exactly the same size than in our modern manufactured lives. Nuts and fruits and seeds and
other things to eat vary in area/volume, so a more/less judgment mechanism that confounded or
integrated these different mathematical attributes would be helpful rather than problematic. This is
also consistent with Piaget’s findings of children’s initial use of length and density rather than number
to make more/less judgments in the conservation of number task. The two rows of objects originally
correspond on all of these (the number, length, and densities of the two rows were all equal), but this
clever task pits use of number against use of density or length when the objects in one row are moved
to be closer together (or farther apart) than those in the other row (Piaget, 1941/1965). Adults and
older children (aged 7 or 8) have un-confounded number from length and density and have a sense
of logical necessity about their judgments. They can give the Piagetian general arguments about why
such movements have not actually made one row more than the other (e.g., reversibility, compensation
of length and density, you have not added or subtracted any). They often exhibit the facial or body
language message “Are you crazy? Why would I think that moving those things apart would change
the number?” even though they did think that two years ago when you interviewed them on the same
task.

However, such children have also learned to differentiate meanings of the word more. As part of
my work in research areas A2 and A3 (Fuson, 1988), we told 4- and 5-year-olds that they would see
some rows in which one row would look like more but the rows would really be the same and some
cases in which one row would look like more and really be more. Eighty percent of 4-year-olds and all
5-year-olds chose the longer row as the row that “looks like more” and then spontaneously counted
on about two-thirds of the trials and matched on one-third of the rows to decide that the rows “really
are the same.” Therefore, discussion of both meanings of more (the length focus that looks like more
and the focus on the number of objects as is really more) can help clarify what these words mean and
what strategies are most appropriate. These children were not yet Piagetian conservers by his logical
necessity criterion, but they were able to use language and the cultural competencies of counting and
matching to make correct more/less judgments in his difficult situation (see also research summarized
in Clements & Sarama, 2007; Fuson, 1988, 1992a, 1992b; Sophian, 1988). This again underscores the
importance of language and situations in mathematical learning.

5.3. Confusions in the use of the mathematical terms ordering, order relations, and ordinal number

The use of counting to make more/less judgments involves a group of related mathematical con-
cepts and words that are frequently misused by researchers as they confound various mathematical
meanings. When asked to count in conservation of number situations, many 4-year-olds can count
both rows accurately, remember both count words, change them to cardinal numbers, and find the
order relation (more/less) on the cardinal numbers (Fuson, 1988). Children use the number word list
to find more/less by generalizing that, for two number words, the word farther out in the list names
the set that is more than the other set (Fuson, Richards, & Briars, 1982). This complex task involves
related but different mathematical concepts: ordered or an ordering on the words in the number-word
list and on the objects in counting, cardinal number, ordinal number (the fifth block from the start), and
order relation (on cardinal numbers, 6 is more than 4, 6 >4). The number-word list of each language
has a linear ordering that must be used and that allows it to become a mental representational tool for
comparing (finding more/less) and adding/subtracting. Children establish a linear ordering on objects
as they count them, but this ordering is not unique: Any ordering that uses all of the objects once
and only once will do. Each counting word is attached to one object via an indicating act like pointing
that relates the word said in time to the object located in space. The last word said in counting is thus
related by the indicating act to the last object in the ordering used in the counting. That last word
must then undergo a conceptual shift from that counting meaning to a cardinal meaning as referring
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to all of the objects just counted. A request to decide which of two sets is more (or less) is asking for
an order relation (< or >) on the cardinal numbers of those two sets. This is different from an ordinal
number that arises in a situation that has a linear ordering (like a line at a ticket office or the list of the
runners in order as they cross the finish line). Here one might count to find the ordinal number, but
then one must make a shift at the end from the counting number (e.g., the seven said as one points to
one’s sister in the ticket line) to the ordinal number word that tells in which place in such an ordering
a particular object is (My sister is seventh in line.). Most languages have the same words for counting
and for cardinal numbers but have special words or endings for ordinal numbers. Confusing these
mathematical terms obfuscates the diagnosis of difficulties in learning mathematics as well as making
comparisons across different research studies more difficult.

5.4. A number line is not an early representation of number for children but a number path and a
number list is

The linearly ordered mental number-word list can be symbolized in written numerals in two dif-
ferent forms: as a count model (a number path or a number list) and as a measure model (a number
line). These two forms are shown in Fig. 2. The top count-cardinal model (the number path) is the
form discussed above for the three levels of addition and subtraction methods. This model could also
be simply a number list of the written numerals equally spaced. In this model, each number word
is taken as a unit to be counted, matched, added, or subtracted. The number path form is often used
in children’s games: the circles or squares around each numeral form a path along which the game
tokens move. This is a count/cardinal model in which each number word or numeral counts (is paired
with) things. The count of things (numerals or squares) uses the count word reference shown in the
third row of Fig. 2: This square is where I say five. The counter then makes a shift to think of that number
word five as a cardinal number that tells how many objects in all so far, the cardinal word reference
shown in the fourth row. A number path can also have the numbers outside the squares or circles
just below, above, or beside them, and the squares or circles can be grouped into fives and tens to
show place-value meanings of the cardinal numbers. A number path with some shapes designating
and thus unitizing each numeral is helpful for games and learning supports. However, the internal
number-word list discussed above that children use to carry out Level 2 and Level 3 mental addition
and subtraction methods probably has no such extra shapes, may have different orientations (mine is
often vertical), and may be primarily auditory rather than visual for some children.

A number line (see Fig. 2) is a measure length model like a ruler or a bar graph in which numbers
are represented by the length from zero along a line segmented into equal lengths. The numerals on a
number line tell how many total unit lengths so far. Young children have difficulties with the number
line representation because they have difficulty seeing the units—they need to see and count things,
and the unit length intervals are not as salient as are the numbers or the interval end-marks. So
children often focus on the numbers instead of on the lengths, count the starting 0, and then are off by
one in their count. The Adding It Up report (NRC, 2001) recognized the difficulties of the number line
representation for young children and recommended that its use begin at Grade 2 and not earlier. The
number line notation of writing the numerals at the end of the lengths is not needed until one wants to
show fractional parts of one whole such as one-half. For whole numbers, to clarify that what is being
counted is unit lengths, the numerals could be written under the lengths. But when one puts points
in between the whole numbers, one needs to shift to the number line notation where the numerals
(whole numbers or fractions) are written at the end of their total length so for. Grade 2 is an appropriate
time for this.

In early childhood materials and in research, the term number line or mental number line really
means a number path count model. Case’s (1991) cognitive model uses this term mental number line
when a mental number list path is actually meant (personal communication, 1998). The NRC Com-
mittee’s report on Early Childhood Math (2009) does make this crucial distinction because it is so
important for children to use visual models that reflect their thinking. It addresses why number lines
are not appropriate in early childhood, but number paths or number lists are.

There is a considerable body of research on children’s and adult’s use of a mental model termed
the analog magnitude system to estimate large quantities or to say where specified larger numbers
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A Number Path: Counting Things

1 Z 3 4 a 6 7 8 9 10

A Number Line: Counting Length Units

N

Count and Cardinal Word Meanings When Counting Things in a Number Path

Count word reference: This square is where I say five.

1 2 3 4 3 6 {4 8 9 10

Cardinal word reference: These are five squares.

[12345]678910

Count and Measure Word Meanings When Counting Unit Lengths on a Number Line

Count word reference: This unit length is where I say five.

Fig. 2. A number path and a number line.

fall along a number line. However, it is not clear, especially for younger children, whether they are
using a mental number list or a number line. The crucial research issue is the change in the spacing and
differentiation of the numbers with age, and this could come either from children’s use of a mental
number list/path or a number line. Given children’s massive experience with counting and the number
list, and the lack of experience of many children with a number line, it seems much more likely that
they are using a mental count list/path rather than a measure length/number line. Confusing these terms,
and attributing number line use when it is really a number path can create problems as we try to think
about children’s conceptions and what is really going on mentally (in both the visual and auditory
systems). The use of number lines such as in a ruler or a bar graph scale is an important part of
measurement and is appropriate in these contexts. But for cardinal number situations and relations
and operations on these cardinal numbers (groups of things), children solve with external groups of
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objects and then internalize the groups of objects to form mental count-cardinal models. Therefore
number lists/paths are the more appropriate pedagogical models to support number understandings,
and they are more appropriate cognitive models for the numerical functioning of young children.
When tasks use 2-digit numbers (e.g., to measure the numerical distance effect), it is important to
consider that children must build the A4 conceptions of multiunit numbers as involving tens and ones
and integrate these conceptions with the patterns in their A3 unitary counting list of numbers from
one to one hundred. Forming concepts of length measure, bar graph scales, and fractions using number
lines is a later development.

6. Interventions for Learning Difficulties in Levels A2, A3, and A4: counting, single-digit, and
multi-digit number and addition and subtraction

Interventions for helping children with difficulties in learning arithmetic are reviewed by Dowker
(2005, chap. 12). Several programs target children who are far behind their peers. Some of these
focus on children from backgrounds of poverty, who have consistently been found—as a group—to
be behind children from middle-class homes (or having educated mothers—measures vary across
studies). Klein and Starkey (2004 ) and Starkey, Klein, and Wakeley (2004 ) developed the Berkeley Math
Readiness Program, which enabled preschool children to show gains in several areas. Clements and
Samara’s Building Blocks program (Clements & Samara, 2007, 2008) is the best-researched preschool
program, and it also clearly articulates research-based learning trajectories that underlie the program
(Clements & Sarama, 2009). The program shows significant benefits even during scaling up (the most
challenging phase of programs). Griffin, Case, and Siegler (1994) reported positive results for the
RightStart program at the Kindergarten level that permitted the 23 children to remain ahead of the
control children in first grade. The program and its more recent published version, Griffin’s Number
Worlds (SRA/McGraw Hill), uses the model of a mental number list (most program materials are
actually number paths, as is appropriate, though some are number lines and all are called number
lines). Ramani and Siegler (2008) have recently carried out short effective interventions with preschool
children playing a game on a number path (squares are drawn around the numbers) counting on 1
or 2 and saying the numbers on which their token moves. My own Math Expressions Kindergarten
program (Fuson, 2006, 2009) can function as such an intervention for English-language learners or
for children from backgrounds of poverty (or both). Use of the program in half-day kindergartens for
30min a day as the whole-class math program led to understandings of teen numbers and of word
problems with totals to ten equivalent to those of East Asian first graders and above that of American
first graders (Fuson, 2009). Because math learning is cumulative, closing the SES gap before entry to
first grade can considerably decrease the numbers of first-grade children who will experience learning
difficulties stemming from having less knowledge than their classmates.

Two other programs target children identified by teachers as experiencing learning difficulties
in the early grades. Mathematics Recovery (Wright, Martland, & Stafford, 2006a; Wright, Martland,
Stafford, & Stanger, 2006b; Wright, Stanger, Stafford, & Martl, 2006c; Wright, 2003, 2008) has been
used widely in English-speaking countries (Australia where it was developed, the USA, England,
Ireland) and is quite successful in enabling children to catch up. It builds upon Steffe’s extensive
research (Steffe, 1992; Steffe & Cobb, 1988; Steffe, von Glasersfeld, Richards, & Cobb, 1983) on the
details of children’s progressive use of different kinds of units for counting (a particularly detailed
treatment of the three levels identified earlier that are used in most summaries of the research).
Teachers work intensively with individual children 30 min a day for 12-14 weeks moving through
the progression from where the child enters to counting on and counting back for numbers under
100. Numeracy Recovery (which now has become Catchup in Numeracy) was developed and tested
by Dowker (2005, 2008). It is aimed at the lowest performing 15-20% of first graders. It identifies
nine target areas, and the research indicates that children have gaps in varying ways. Teachers are
released for half a day a week and work with each identified child in their class for 30 min a week
for about 30 weeks. This much less intensive approach does enable children to catch up in their
own needed areas. Having teachers work with children from their own class enables the teachers
to understand and support these children better in the regular class. This program includes more
topics than Math Recovery (for example, word problems of each type, arithmetic principles, and
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estimation) and concentrates less on moving children through the core counting levels discussed
earlier.

My Math Expressions regular classroom math program (Fuson, 2006, 2009) combines many
of the features of these two programs in terms of content, although it is intended as the ini-
tial classroom learning experience and not as an individualized intervention scheme. We find that
most children can close their gaps in Kindergarten, with appropriate instruction, but a few bene-
fit from extra time and targeted attention. Some first graders who enter without the Kindergarten
preparation also benefit from extra time on the program learning activities and targeted atten-
tion for any gaps. As discussed earlier for the multi-digit methods, the Math Expressions program
(Fuson, 2006, 2009) also moves rapidly to mathematically desirable methods that are more acces-
sible and generalize more readily than do multi-digit methods based on counting on and counting
back.

Thus we see the need for three aspects of early number learning through about age 8. One
is for regular math programs that support children through the research-based learning paths of
conceptually based solution methods and that reflect the balanced approach integrating Piaget
and Vygotsky summarized in Table 2. A second is for extra supported learning time, preferably
early in the year, for children who enter a given grade way-behind in this learning path so that
they can catch up. A third is for some weekly help for slower learners to help them consol-
idate current topics or review and consolidate past topics. Together these steps would greatly
increase the number of children gaining grade level understanding and fluency in the early years of
school.

There is considerable research seeking to identify types of learning difficulties children have in
arithmetic, but less work on interventions to overcome such difficulties. Geary (1994) and Geary and
Hoard (2005) identify three subtypes of learning difficulties: procedural, semantic memory, and visu-
ospatial. Butterworth (1999, 2005) summarizes aspects of developmental dyscalculia. Jordan, Hanich,
and Uberti (2003) review aspects of children having mathematical difficulties. A developmental delay
is a major element in many such cases, and difficulty (slowness, errors) with single-digit addition and
subtraction is a frequent occurrence. Use of primitive strategies is sometimes identified as involved,
but often with no differentiation between Level 1 counting all or Level 2 counting on. I have found in
extensive work in many classrooms, including special education and learning disabilities classrooms,
that counting on for addition, and especially counting on for subtraction as a forward method, is fast
and accurate enough for almost all children to carry out more-advanced mathematics in later grades.
Thus use of counting on for totals between 7 and 18 combined with rapid knowledge of addition and
subtraction for smaller totals (with occasional use of counting on as a backup strategy) is really accept-
able for less-advanced and struggling students. Forcing rote memorization of additions can interfere
with later learning of multiplications.

What would be helpful for future intervention research is ascertaining the special kinds of dif-
ficulties particular children might have even in learning counting on for adding and subtracting.
Methods of keeping track of how many have been counted on can involve fingers or visual, audi-
tory, or body movement patterns. A child might have difficulties with one of these but not another.
It also would be helpful to identify issues particular children have making and using math drawings
or other place value representations to support understanding of multi-digit methods of adding and
subtracting.

7. Conclusions

Piaget and Vygotsky have had a massive effect on our knowledge about children’s mathe-
matical learning up to age 8 or so. We now have detailed understanding of children’s learning
paths for the Levels A2, A3, and A4—counting and cardinal relationships, single-digit addition
subtraction, and multi-digit addition and subtraction. We also have some knowledge of cultural
and symbolic issues that affect movement along these learning paths. The integration of Piage-
tian and Vygotskiian perspectives on learning and teaching reflected in Table 2 provides a strong
basis for mathematical school learning that can move children along known learning paths and
support both understanding and fluency. Interventions based on the explosion of research have
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been created, and research could productively continue on these. It now seems that research on
learning difficulties in number and arithmetic (the most central aspects of early mathematics)
could shift from debates about the nature and extent of such difficulties to how to overcome
them.

Research on mathematical learning difficulties is also in a particularly good position to help disen-
tangle which kinds of learning difficulties stem from cognitive deficits that impair particular aspects of
numerical processing, which kinds have been caused or increased by inadequate learning supports in
the home or school, and which parts of solution approaches within learning paths that flow relatively
easily for normal children present particular difficulties for which kinds of learning difficulties. Avoid-
ing the misuse of mathematical terms, and of undefined and vague terms like number sense, and using
precise and mathematically correct terminology, will also help the field progress. Intervention studies
of ways to help children overcome learning difficulties is a particularly powerful research approach to
disentangle these issues while also contributing to improved learning for these children. More atten-
tion to the crucial research areas A3 and A4 that form the foundation for further mathematical success
would also be helpful.
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